Abstract

Admission control is a network Quality of Service (QoS) procedure. Admission control determines how bandwidth and latency are allocated to streams with various requirements. Admission control schemes therefore need to be implemented between network edges and core to control the traffic entering the network. An application that wishes to use the network to transport traffic with QoS must first request a connection, which involves informing the network about the characteristics of the traffic and the QoS required by the application. This information is stored in a traffic contract. The network judges whether it has enough resources available to
accept the connection, and then either accepts or rejects the connection request. This is known as Admission Control. Here in our project we are concerning for the different measurement based admission control algorithms used for this purpose. For this we will discuss four measurement based admission control algorithms, such as Hoeffding Bounds, Acceptance Region and Measured Sum. Further a new algorithm is proposed using priority measurement based on the round trip times of the nodes. we will show the output of the algorithms using the NS-2 simulator and compare the simulation output of the four measurement based admission control algorithms using Nam. We will simulate using X-graph to find the throughput and utilization of the bandwidth. Further these parameters are compared performing the video transmission on all the four admission control algorithms.

Reference


Index Terms

Computer Science
Communications

Key words

Video Transmission
Admission Control
bounded delay

link utilization

intricate collisions