Abstract
Semantic web search engine Falcons support keyword based search for linked objects by using comprehensive virtual document which it creates for each object. In our work we are suggesting idea of using Selectivity Estimation of triple patterns for ranking of resulting objects and generating snippet for the keyword query for Falcons Semantic web search engine. Selectivity of a triple pattern is the fraction of triple satisfying the keyword query. Our work ranks resulting objects considering their relevance to the keyword query. For each resulting object for a searched keyword query, Object-rank is calculated by calculating the query-relevant-index for
each RDF triple related to the object. For each resulting object, a query relevant structured
snippet is provided to show the associated literals and linked objects matched with the query.
Snippet generation is also done by query-relevant index of RDF triples related to the resulting
object.

Reference

1. Cheng Gong & Qu Yuzhong, Searching Linked Objects with Falcons: Approach,
 Implementation and Evaluation. In International Journal on Semantic Web and Information
 System, 5(3), 50-71, July-September 2009
2. X. Zhang, G. Chang & Y. Qu (2007). Ontology Summarization based on RDF Sentence
 Graph. In C. Williamson, M. E. Zurko, P. Patel-Schneider, & P. Shenoy (Eds.), Proceedings of
 the 16th International Conference on World Wide Web (pp. 707-716). New York, NY, USA: ACM
 Efficient Remote Synchronization of RDF Models. In K. Aberer et al. (Eds.), Proceedings of the
 6th Semantic web Conference and the 2nd Asian Semantic web Conference (Vol. 4825, pp. 537
 - 551). Berlin/Heidelberg: Springer.
4. T. Tran, P. Cimiano, S. Rudolph, & R. Studer (2007). Ontological Based Interpretation of
 Keywords for Semantic Search. In K. Aberer et al. (Eds), Proceedings of the 6th Semantic web
 Conference and the 2nd Asian Semantic web Conference (Vol. 4825, pp. 523 - 536). Berlin/Heidelberg:
 Springer.
 Optimization Approach based on Triple Pattern Selectivity Estimation(Section 2). Technical
 Report IFI-2007.02, Department of Informatics, University of Zurich, 2007..
6. M. Arenas, M. Consens, and A. Mallea. Revisiting Blank Nodes in RDF to Avoid the
 Semantic Mismatch with SPARQL. (Section 2)
 Society for Information Science, 50(11), 1028-1029.
 6.6 Blank Nodes.
 Matching. In L. Carr, D. D. Roure, A. Iyengar, C. Goble, & M. Dahlin (Eds.), Proceedings of the
 15th International Conference on World Wide Web (pp. 23-31). New York, NY, USA: ACM.
 query to semantic search. In K. Aberer et al. (Eds.), Proceedings of 6th International Semantic
 Web Conference and the 2nd Asian Semantic Web Conference (Vol. 4825, pp. 694-707),
 Berlin/Heidelberg: Springer.
 Keyword Based Interface to Semantic Search. In S. Bechhofer, M. Hausewirth, J. Hauffmann,
 & M. Koubarakis (Eds.), Proceedings of 5th European Semantic Web Conference (Vol. 5021,
 pp. 584-598). Berlin/Heidelberg: Springer.
Index Terms

Computer Science Communications

Key words

Semantic Web Falcons

Snippet Generation Resource Ranking