CFP last date
20 September 2024
Reseach Article

A Low Cost Scheme for Tracking the Lives Buried in Landslides

Published on None 2011 by Krishnakumar M., Pramod K.V., Geethu R.S.
Computational Science - New Dimensions & Perspectives
Foundation of Computer Science USA
NCCSE - Number 2
None 2011
Authors: Krishnakumar M., Pramod K.V., Geethu R.S.
54698241-843e-4fba-b8f2-30c854a88c7f

Krishnakumar M., Pramod K.V., Geethu R.S. . A Low Cost Scheme for Tracking the Lives Buried in Landslides. Computational Science - New Dimensions & Perspectives. NCCSE, 2 (None 2011), 44-49.

@article{
author = { Krishnakumar M., Pramod K.V., Geethu R.S. },
title = { A Low Cost Scheme for Tracking the Lives Buried in Landslides },
journal = { Computational Science - New Dimensions & Perspectives },
issue_date = { None 2011 },
volume = { NCCSE },
number = { 2 },
month = { None },
year = { 2011 },
issn = 0975-8887,
pages = { 44-49 },
numpages = 6,
url = { /specialissues/nccse/number2/1858-160/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Special Issue Article
%1 Computational Science - New Dimensions & Perspectives
%A Krishnakumar M.
%A Pramod K.V.
%A Geethu R.S.
%T A Low Cost Scheme for Tracking the Lives Buried in Landslides
%J Computational Science - New Dimensions & Perspectives
%@ 0975-8887
%V NCCSE
%N 2
%P 44-49
%D 2011
%I International Journal of Computer Applications
Abstract

The landslides cause several casualties and economic losses all over the world. Studies show that most casualties happen within the first 18-35 minutes after the burial. This demands life-detecting systems to be available immediately on the spot after the disaster. A suggested approach is deploying multiple units of these instruments across the country. Main constraint in developing countries for multiple deployments is the cost of the gadget. A scheme for detection and localization of lives buried in landslides based on a statistical and computational technique, called independent component analysis (ICA) and the Sound Source localisation using time delay of arrival (TDOA) and Cross- Correlation method is proposed.

References
  1. Usman, K. Sadiq, M.A. Juzoji, H.; Nakajima, “A study of heartbeat sound separation using independent component analysis technique”, Enterprise Networking and Comp. in Healthcare Industry, 2004. HEALTHCOM 2004. Proc. Volume , Issue , 28-29 June 2004 Page(s): 92 – 95
  2. S. Haykin and Z. Chen, “The cocktail party problem,” Neural Computation, vol. 17, pp. 1875–1902,Sep 2005
  3. Hermann Brugger, Markus Falk, “Analysis of Avalanche Safety Equipment for Backcountry Skiers”,Proc. JAHRBUCH 2002, Austrian Association for Alpine and High Altitude Medicine 2002
  4. http://nrdms.gov.in/natural_disaster.asp
  5. John C. Murray, Harry Erwin and Stefan Wermter, “Robotic Sound-Source Localization and Tracking using Interaural Time Difference and Cross-Correlation”. Proc. AI Workshop on NeuroBotics, 2004
  6. Jean-Franc¸ois Cardoso, “Blind signal separation: Statistical principles,” in Proceedings of the IEEE, Special issue on blind identification and estimation, 1998, vol. 9, pp. 2009–2025.
  7. A. Hyvarinen, J. Karhunen and E. Oja,"Independent Component Analysis", Wiley & Sons, 2001.
  8. Aapo Hyv¨arinen and Erkki Oja. Independent component analysis: A tutorial. http://www.cis.hut.fi/projects/ica/.
  9. A. Bell and T. Sejnowski. “An Information Maximization Approach to Blind Separation and Blind Deconvolution”. Neural Computation, 7:1129-1159, July 1995.
  10. Shoji Makino, Shoko Araki, Ryo Mukai and Hiroshi Sawada “Audio Source Separation based on Independent Component Analysis” in Proc. ISCAS 2004, pp. 668–671
  11. A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10:626–634, 1999
  12. Te-Won Lee, Terrence J. Sejnowski, “Independent Component Analysis for Mixed Sub- Gaussian and Super- Gaussian Sources”, 4th Joint Symposium on Neural Computation Proceedings,1997
  13. Tichavsk´y, P., Koldovsk´y, Z. and Oja, E.: Performance analysis of the FastICA algorithm and Cram´er-Rao bounds for linear independent component analysis. IEEE Trans. on Signal Processing 54, no. 4, April 2006.
  14. Koldovsk´y, Z., Tichavsk´y, P., and Oja, E.: Efficient variant of algorithm FastICA for independent component analysis attaining the Cram´er-Rao lower bound. IEEE Trans.on Neural Networks, to appear (2006).
  15. http://www.cis.hut.fi/projects/ica/fastica/
  16. T. W. Lee, A. J. Bell, and R. Orglmeister, “Blind Source Separation of real world signals,” Neural Networks,vol. 4, pp. 2129–2134, 1997.
  17. Namgook Cho, Yu Shiu and C.-C. Jay Kuo, “An Improved Technique for Blind Audio Source Separation”, Proc.International Conf. on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP'06), 2006
  18. http://www.cis.hut.fi/projects/ica/cocktail/cocktail_en.cgi
  19. Bates, B , "The Cardiovascular System.". A Guide to Physical Examination and History Taking. 9h Ed. 2005
  20. Krishnakumar M., Pramod K. V., Geethu R.S., “ Source Separation of Heartbeat Sounds” PP-65-71 , MES JTM,ISSN 0976-3724, Vol1, No 02,2010
Index Terms

Computer Science
Information Sciences

Keywords

Audio processing Landslides Life detecting system Signal processing Statistical technique