Abstract

The basic operations on the graphs with millions of vertices are common in various applications. To have faster execution of such operations is very essential to reduce overall computation time. Today’s Graphics processing units (GPUs) have high computation power and low price. This device can be treated as an array of Single Instruction Multiple Data (SIMD) processors using CUDA software interface by Nvidia. Massively Multithreaded architecture of a CUDA device makes various threads to run in parallel and hence making optimum use of available computation power of GPU. In case of graph algorithms, vertices of the graphs are processed in parallel by mapping them to various threads on device. By making thousands of threads to run in parallel, computation time required for these algorithms is drastically decreased as compared to their CPU implementation.
We studied different parallel algorithms for Breadth first search, all pairs shortest path that are carried out on GPU using CUDA and make their comparative study with respect to execution time, data structure used, input data etc. In the paper, we presented overview of various parallel methods carried out on GPU using its multithreaded architecture for BFS, APSP by various authors.

Reference

- The Ninth DIMACS implementation challenge on shortest path
 http://www.dis.uniroma1.it/challenge9/
- NVIDIA. NVIDIA CUDA Programming Guide 2.0
- S. Nagendran, M. Ashrafulla, J. Bagga, 2008 “Assessment of SIMD programming on graphics card”.
- Vibhav Vineet and P. J. Narayanan, 2009 “Large graph algorithms for massively multithreaded architecture”
- D. Chakrabarti, Y. Zhan, and C. Faloutsos, 2004 R-MAT: A recursive model for graph mining. In In SIAM International Conference on Data Mining.
- Paulius Micikevicius, 2004 General parallel computation on commodity graphics hardware: Case study with the all pairs shortest paths problem. In PDPTA, pages 1359–1365.
- P. Harish and P. J. Narayanan, 2007 Accelerating Large Graph Algorithms on the GPU Using CUDA. In HiPC, volume 4873 of Lecture Notes in Computer Science, pages 197-208,
- M. Hussein, A. Varshney, and L. Davis, 2007 On Implementing Graph Cuts on CUDA. In First Workshop on General Purpose Processing on Graphics Processing Units.

Index Terms

Computer Science

Algorithms
Key words

<table>
<thead>
<tr>
<th>Parallel computing</th>
<th>Graph Algorithms</th>
<th>SIMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>architecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUDA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>