CFP last date
20 June 2024
Reseach Article

Dynamic Hand Localization and Tracking using SURF and Kalman Algorithm

by Richa Golash, Yogendra K. Jain
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 105 - Number 16
Year of Publication: 2014
Authors: Richa Golash, Yogendra K. Jain
10.5120/18464-9833

Richa Golash, Yogendra K. Jain . Dynamic Hand Localization and Tracking using SURF and Kalman Algorithm. International Journal of Computer Applications. 105, 16 ( November 2014), 38-42. DOI=10.5120/18464-9833

@article{ 10.5120/18464-9833,
author = { Richa Golash, Yogendra K. Jain },
title = { Dynamic Hand Localization and Tracking using SURF and Kalman Algorithm },
journal = { International Journal of Computer Applications },
issue_date = { November 2014 },
volume = { 105 },
number = { 16 },
month = { November },
year = { 2014 },
issn = { 0975-8887 },
pages = { 38-42 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume105/number16/18464-9833/ },
doi = { 10.5120/18464-9833 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:37:54.620513+05:30
%A Richa Golash
%A Yogendra K. Jain
%T Dynamic Hand Localization and Tracking using SURF and Kalman Algorithm
%J International Journal of Computer Applications
%@ 0975-8887
%V 105
%N 16
%P 38-42
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Moving Object detection and tracking its path now-a-days has become very interesting field of research. But current state of art is still facing many challenges due to natural factors of the object and environmental factors, which plays significant role in determining efficiency of visual tracking system. This paper is a part of work in the field of Dynamic Hand Recognition. It highlights the important challenges faced in locating and tracking non rigid object, hand and proposes a system to locate hand using SURF algorithm and tracking its path using Kalman filter. The proposed work will be helpful in improving the efficiency in Human Computer Interaction using hand.

References
  1. Fang Y. , Wang K. , Cheng J. , Lu H. , "A real-time hand gesture recognition method", IEEE international conference on Multimedia and Expo, pp. 995–998,2007.
  2. Rautaray S. S. , Agrawal A. , "Real time hand gesture recognition System for dynamic applications", International Journal of Ubi. Comp, Vol. 3, No. 1, Jan. 2012.
  3. Shan C. , Tan Tieniu, Yucheng W. , "Real-time hand tracking using a mean shift embedded particle filter", Pattern Recognition, Vol. 40, No. 7, pp. 1958-1970, 2007. .
  4. Chaudhary A. , Raheja J. L. , Das K. , Raheja S. , "Intelligent approaches to interact with machines using hand gesture recognition in natural way: a survey", Int. J. Comput Sci. Eng Survey (IJCSES), Vol. 2, No. 1, pp. 122–133, 2011.
  5. Rautaray S. S. , Agrawal A. , "A Novel Human Computer Interface Based On Hand Gesture Recognition Using Computer Vision Techniques", In Proceedings of ACM IITM'10, pp. 292-296, 2010.
  6. Murthy G. R. S. , Jadon R. S. , "A Review of Vision Based Hand Gestures Recognition", International Journal of Information Technology and Knowledge Management, Vol. 2, No. 2, pp 405-410, 2009.
  7. Harris C. , Stephens M. , "A Combined Corner and Edge Detector", Proc. of 4th Alvey Vision Conf. , Manchester, pp. 147-151, 1998.
  8. Shi J. , Tomasi C. , "Good features to track", Proc. of IEEE International conf. on Computer vision and Pattern Recognition CVPR, pp. 593-600, 1994.
  9. Lowe D. G. , "Distinctive image features from scale-invariant key points", International Journal of Computer Vision, Vol. 60, No. 2, pp. 91–110, 2004.
  10. Bay H. , Tuytelaars T. , Gool L. V. , "SURF: Speeded Up Robust Features", Proc . European conf. ECCV, pp. 404-417, 2006.
  11. Bao J. , Song A. , Guo Y. , Tang H. , "Dynamic hand gesture recognition based on SURF tracking", International conference on electric information and control engineering (ICEICE), pp 338–341, 2011.
  12. Tu Q. , Xu Y. , Zhou M. , "Robust vehicle tracking based on Scale Invariant Feature Transform", Proc. IEEE Int. Conf. on Information and Automation, 2008 ICIA, pp. 86-90, 2008.
  13. Yilmaz A. , Javed O. , Shah M. , "Object tracking: A survey", ACM Computing Surveys, Vol. 38, no. 4, 2006.
  14. Sankaranarayanan A. C. , Veeraraghavan A. , Chellappa R. , "Object Detection, Tracking and Recognition for Multiple Smart Cameras", Proc. of the IEEE, Vol. 96, No. 10, pp. 1606-1624, 2008.
  15. Wang T. , Backhouse A. G. , Gu I. Y. H. , "Online subspace learning on Grassmann manifold for moving object tracking in video", Proc. IEEE int'l conf. on Acoustics, Speech and Signal Processing, ICASSP'2008, pp. 969-972, 2008.
  16. Huang S. , Hong J. , "Moving object tracking system based on camshift and Kalman filter", International conference on CECNet, pp 1423–1426, 2011
  17. Nathan Funk, "A Study of the Kalman Filter applied to Visual Tracking", University of Alberta, Project for CMPUT 652,December 7, 2003
Index Terms

Computer Science
Information Sciences

Keywords

Box Filter Detection Kalman Filter SURF Tracking