CFP last date
20 June 2024
Call for Paper
July Edition
IJCA solicits high quality original research papers for the upcoming July edition of the journal. The last date of research paper submission is 20 June 2024

Submit your paper
Know more
Reseach Article

A Parametric Approach to Solve Multi Objective Fuzzy Linear Programming Problem

by Suraj Singh Chand, Vineet Bhatt
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 107 - Number 11
Year of Publication: 2014
Authors: Suraj Singh Chand, Vineet Bhatt
10.5120/18794-0141

Suraj Singh Chand, Vineet Bhatt . A Parametric Approach to Solve Multi Objective Fuzzy Linear Programming Problem. International Journal of Computer Applications. 107, 11 ( December 2014), 10-13. DOI=10.5120/18794-0141

@article{ 10.5120/18794-0141,
author = { Suraj Singh Chand, Vineet Bhatt },
title = { A Parametric Approach to Solve Multi Objective Fuzzy Linear Programming Problem },
journal = { International Journal of Computer Applications },
issue_date = { December 2014 },
volume = { 107 },
number = { 11 },
month = { December },
year = { 2014 },
issn = { 0975-8887 },
pages = { 10-13 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume107/number11/18794-0141/ },
doi = { 10.5120/18794-0141 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:40:47.210574+05:30
%A Suraj Singh Chand
%A Vineet Bhatt
%T A Parametric Approach to Solve Multi Objective Fuzzy Linear Programming Problem
%J International Journal of Computer Applications
%@ 0975-8887
%V 107
%N 11
%P 10-13
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A new method has been proposed by Senthilkumar and Rajendran [1] for solving fuzzy linear programming problem in parametric form. This paper extends this method for solving multi-objective fuzzy linear programming problem with fuzzy variables in parametric form. To obtain optimal solution, problem is converted into two auxiliary crisp linear programming problems corresponding to each objective functions. A numerical example is given to check the feasibility of the proposed method.

References
  1. Senthilkumar, P. , and Rajendran, G. 2010. On the Solution of Fuzzy Linear Programming Problem, International Journal of Computational Cognition, 8: 45-47.
  2. Bellman, R. E. , and Zadeh. L. A. 1970. Decision making in a fuzzy environment, Management Science, 17: 141-164.
  3. Zimmermann, H. J. 1978. Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and System, 1: 45-55.
  4. Delgado, M. , Verdegay, J. L. , and Vlla, M. A. 1989. A general model for fuzzy linear programming, Fuzzy Sets and System, 29: 21-29.
  5. Fang, S. C. , and Hu, C. F. 1999. linear Programming with fuzzy coefficient in constraint, Comput. Math. Appl. , 37: 63-76.
  6. Maleki, H. R. , Tata, M. , and Mashinchi, M. 2000. Linear programming with fuzzy variable, Fuzzy Sets and System, 109: 21-33.
  7. Allahviranloo, T. , Lotfi, F. H. , Kiasary, M. Kh. , Kiani, N. A. , and Alizadeh. , L. 2008. Solving Fully Fuzzy Linear Programming Problem by the Ranking Function, Applied Mathematical Sciences, 2: 19 – 32.
  8. Kumar, A. , and Kaur, J. 2011. A New Method for Solving Fuzzy Linear Programs with Trapezoidal Fuzzy Numbers, Journal of fuzzy set valued analysis, 2011: Article ID jfsva-00102, 1-12 doi:10. 5899/2011/jfsva-00102.
  9. Roseline, S. S. , and Amirtharaj, E. C. H. 2012. Different strategies to solve fuzzy linear programming problems, Recent Research in Science and Technology, 4(5): 10-14.
  10. Cadenas, J. M. , and Verdegay, J. L. 1997. Using fuzzy numbers in linear programming, IEEE, Transactions on Systems, Man and Cybernetics-Part B: Cybernetics 27:1016-1022.
  11. Stanciulescu, C. , Fortemps. Ph. , Installe. M. , and Wertz. V. 2003. Multiobjective fuzzy linear programming problems with fuzzy decision variables, European Journal of Operational Research 149: 654–675.
  12. Cadenas, J. M. , and Verdegay, J. L. 2000. Using ranking function in multi objective fuzzy linear programming, Fuzzy set and system, 111: 47-53.
  13. Klir, G. J. , Clair, V. S. , and Yuan, B. 1997. Fuzzy set theory: foundation and application. Printice-Hall Inc.
  14. Senthilkumar. P. , and Rajendran, G. 2009. Solution of fuzzy linear system by using fuzzy centre, Applied Mathematical science, 3: 2411-2419.
Index Terms

Computer Science
Information Sciences

Keywords

Multi objective fuzzy linear programming fuzzy number.