CFP last date
20 June 2024
Reseach Article

Construction of Q-Fuzzy Left H-Ideals Interms of HEMI Rings

by A. Solairaju, G. Balasubramanian, K. Tamilselvi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 107 - Number 9
Year of Publication: 2014
Authors: A. Solairaju, G. Balasubramanian, K. Tamilselvi
10.5120/18777-0094

A. Solairaju, G. Balasubramanian, K. Tamilselvi . Construction of Q-Fuzzy Left H-Ideals Interms of HEMI Rings. International Journal of Computer Applications. 107, 9 ( December 2014), 8-11. DOI=10.5120/18777-0094

@article{ 10.5120/18777-0094,
author = { A. Solairaju, G. Balasubramanian, K. Tamilselvi },
title = { Construction of Q-Fuzzy Left H-Ideals Interms of HEMI Rings },
journal = { International Journal of Computer Applications },
issue_date = { December 2014 },
volume = { 107 },
number = { 9 },
month = { December },
year = { 2014 },
issn = { 0975-8887 },
pages = { 8-11 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume107/number9/18777-0094/ },
doi = { 10.5120/18777-0094 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:40:35.540134+05:30
%A A. Solairaju
%A G. Balasubramanian
%A K. Tamilselvi
%T Construction of Q-Fuzzy Left H-Ideals Interms of HEMI Rings
%J International Journal of Computer Applications
%@ 0975-8887
%V 107
%N 9
%P 8-11
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, the Biswas's idea of Q–fuzzy subgroups to left h-ideals of hemi rings is applied. We introduce the notion of Q–fuzzy subgroups to left h-ideals in hemi rings and investigate some of related properties. Relationship between Q–fuzzy left h–ideals, and Q–fuzzy left h–ideals of hemi ring are also given.

References
  1. R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy sets and systems, 44 (1990), 121- 124
  2. . M. Henriksen, Ideals in Semi rings with commutative addition, Am. Math. Soc. Notices, Volume 6, (1958), 03-21
  3. K. Izuka, On the Jacobson radical of a semi ring, Tohoku, Math. J. , Volume 11(2), (1959), 409-421.
  4. Y. B. Jun, M. A. Ozturk and S. Z. Song, On fuzzy h- ideals in hemi rings, info. Scien. 162(2004), 211-226.
  5. R. LaTorre, On h-ideals and k-ideals in hemi rings, Publ. Math. Debrecen, Vol. 12 (1965), 219-226.
  6. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512 - 517.
  7. A. Solairaju and R. Nagarajan, Q- fuzzy left R-subgroups of near rings with respect to T-norms, Antarctica Journal of mathematics, 5 (2), (2008), 59-63.
  8. A. Solairaju and R. Nagarajan, A New Structure and Constructions of Q- Fuzzy groups, Advances in Fuzzy mathematics, 4(1), (2009), 23-29.
  9. A. Solairaju and R. Nagarajan, Lattice valued Q- fuzzy sub modules of near rings with respect to T-norms, Advances in Fuzzy mathematics, 4(2), (2009),137-145.
  10. A. Solairaju and R. Nagarajan, Q- fuzzy subgroups of Beta fuzzy congruence relations on a group, International Journal of Computer Science, Network and Security(IJCSNS),2010.
  11. A. Solairaju and R. Nagarajan, characterization of interval valued anti fuzzy left h- ideals over hemi rings , Advances in Fuzzy Mathematics, Volume 4(2), (2009) , 129-136.
  12. L. A. Zadeh, Fuzzy sets, Information control, Volume 8, (1965), 338-353.
Index Terms

Computer Science
Information Sciences

Keywords

Q-fuzzy subgroup Hemi rings Left h-ideals characteristic normal Q-fuzzy h-ideals