CFP last date
20 September 2024
Reseach Article

Review of Human Motion Detection based on Background Subtraction Techniques

by Arwa Darwish Alzughaibi, Hanadi Ahmed Hakami, Zenon Chaczko
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 122 - Number 13
Year of Publication: 2015
Authors: Arwa Darwish Alzughaibi, Hanadi Ahmed Hakami, Zenon Chaczko
10.5120/21757-4988

Arwa Darwish Alzughaibi, Hanadi Ahmed Hakami, Zenon Chaczko . Review of Human Motion Detection based on Background Subtraction Techniques. International Journal of Computer Applications. 122, 13 ( July 2015), 1-5. DOI=10.5120/21757-4988

@article{ 10.5120/21757-4988,
author = { Arwa Darwish Alzughaibi, Hanadi Ahmed Hakami, Zenon Chaczko },
title = { Review of Human Motion Detection based on Background Subtraction Techniques },
journal = { International Journal of Computer Applications },
issue_date = { July 2015 },
volume = { 122 },
number = { 13 },
month = { July },
year = { 2015 },
issn = { 0975-8887 },
pages = { 1-5 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume122/number13/21757-4988/ },
doi = { 10.5120/21757-4988 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:10:25.821330+05:30
%A Arwa Darwish Alzughaibi
%A Hanadi Ahmed Hakami
%A Zenon Chaczko
%T Review of Human Motion Detection based on Background Subtraction Techniques
%J International Journal of Computer Applications
%@ 0975-8887
%V 122
%N 13
%P 1-5
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

For the majority of computer vision applications, the ability to identify and detect objects in motion has become a crucial necessity. Background subtraction, also referred to as foreground detection is an innovation used with image processing and computer vision fields when trying to detect an object in motion within videos from static cameras. This is done by deducting the present image from the image in the background or background module. There has been comprehensive research done in this field as an effort to precisely obtain the region for the use of further processing (e. g. object recognition). This paper provides a review of the human motion detection methods focusing on background subtraction technique.

References
  1. Pets 2006:benchmark dataset: gth ieee international workshop on performance evaluation of tracking and surveillance; http//www. evg. rdg. ac. uk/pets2006/data. html.
  2. T. Bouwmans. Traditional approaches in background modeling for static cameras. journal, 2015.
  3. MKalpana Chowdary, S Suresh Babu, and Haidar Khan. Fpga implementation of moving object detection in frames by using background subtraction algorithm. pages 1032–1036, 2013.
  4. Koji Kinoshita, Masaya Enokidani, Masanori Izumida, and Kenji Murakami. Tracking of a moving object using one-dimensional optical flow with a rotating observer. pages 1–6, 2006.
  5. BSM Madhavi and MV Ganeswara Rao. A fast and reliable motion human detection and tracking based on background subtraction. IOSR Journal of Electronics and Communication Engineering, 1(1):29–35, 2012.
  6. M. Madhusudhan. Human motion detection using background subtraction algorithm. journal, 4(2):991–996, 2013.
  7. PD Mahamuni, RP Patil, and HS Thakar. Moving object detection using background subtraction algorithm using simulink.
  8. Mr Mahesh C Pawaskar, Mr NS Narkhede, and Mr Saurabh S Athalye. Detection of moving object based on background subtraction. 2014.
  9. Rupali S Rakibe and Bharati D Patil. Background subtraction algorithm based human motion detection. International Journal of scientific and research publications, 3(5), 2013.
  10. Aresh T. Saharkhiz. Low complexity background subtraction using frame difference method. 2010.
  11. Soharab Hossain Shaikh, Khalid Saeed, and Nabendu Chaki. Moving object detection: A new approach. pages 25–48, 2014.
Index Terms

Computer Science
Information Sciences

Keywords

Motion detection methods Background subtraction method Moving object detection