Abstract

This study introduced an object-oriented approach to flood mapping and affected field estimation in central Cambodia. Traditional pixel-based image algorithms for flood mapping and land use and land cover classification endure from low accuracy, sub-pixel problems, and the cover noise effect in the resulting images. On the other hand, the object-based image analysis (OBIA) approach has been thoroughly developed in the last two decades to overcome the limitations and disadvantages of the traditional pixel-based approaches by generating and analyzing meaningful image objects instead of individual pixels and reducing the speckle noise effect. The OBIA approach was applied for the image classification with a new improved estimation algorithm with multi scale parameter in the segmentation process to obtain more accurate results in the flood mapping. Flooding can be recognized using a variety of approaches such as statistics, ground-based measuring, prediction model, remote sensing techniques.
Constellations for Disaster Detection and Monitoring, "Natural Hazards," Volume 15, Issue 11, pp. 79-85,
- Allenbach, B. et al. 2005, "Rapid EO Disaste Mapping Service: Added value, feedback and perspectives after 4 years of Charter actions," SERTIT.
- eCognition User Guider 4, Defines Imaging, 2003
- Kiema, J. B. K. 2002, "Texture analysis and data fusion in the extraction of topographic objects from satellite imagery," International Journal of Remote Sensing,
- Xie 2005, "Object Oriented Classification, Remote Sensing Image Process and Analysis.,"

Index Terms

Computer Science

Artificial Intelligence

Keywords
Change Detection Classification Flood Mapping Object-Based Approach
Segmentation