Improved Haze Removal of Underwater Images using Particle Swarm Optimization

Volume 122 - Number 4
Year of Publication: 2015

Authors:
Shriya Sharma
Sakshi Bhalla

Abstract

The main objective of fog removal algorithm is to estimate the airlight map for the given image and then perform the necessary operations on the image in order to overcome the fog in the image and enhance the quality of the image. The dark channel prior method of fog removal is more suitable and time-saving in real-time systems. In this paper, an efficient approach for fog removal of foggy images based on the combination of dark channel prior and genetic algorithm is presented. It is found that the proposed method is more suitable for obtaining the better quality of the image than the most of the existing methods.

References

- Ancuti, Codruta O., Cosmin Ancuti, Chris Hermans, and Philippe Bekaert. "A fast
semi-inverse approach to detect and remove the haze from a single image.

- Zhang, Yong-Qin, Yu Ding, Jin-Sheng Xiao, Jiaying Liu, and Zongming Guo.
 Visibility enhancement using an image filtering approach.

- Xiao, Chunxia, and Jiajia Gan.
 Fast image dehazing using guided joint bilateral filter.

- Xie, Bin, Fan Guo, and Zixing Cai.
 Fast Haze Removal Algorithm for Surveillance Video.

- Kim, Eun-Kyoung, Jae-Dong Lee, Byungin Moon, and Yong-Hwan Lee.
 Hardware Architecture of Bilateral Filter to Remove Haze.
 In Communication and Networking, pp. 129-135.

- Ding, Meng, and RuoFeng Tong.
 Efficient dark channel based image dehazing using quadtrees.

- Xue, Yungang, Ju Ren, Huayou Su, Mei Wen, and Chunyuan Zhang.
 Parallel Implementation and Optimization of Haze Removal Using Dark Channel Prior Based on CUDA.

- Lan, Xia, Liangpei Zhang, Huanfeng Shen, Qiangqiang Yuan, and Huifang Li.
 Single image haze removal considering sensor blur and noise.

- Ogorodnikov, B. I., and V. E. Khan.
 Impact of haze and fog on filter characteristics in the process of monitoring radioactive aerosol.

- Guo, Fan, Jin Tang, and Zi-Xing Cai.
 Image dehazing based on haziness analysis.

- Galdran, Adrian, Javier Vazquez-Corral, David Pardo, and Marcelo Bertalmio.
 In Computer Vision-ECCV 2014 Workshops, pp. 259-270.

- Zhang, Jun, and Shiqiang Hu.
 A GPU-accelerated real-time single image de-hazing method using pixel-level optimal de-hazing criterion.

- Liu, Qian, MaoYin Chen, and DongHua Zhou.
 Single image haze removal via depth-based contrast stretching transform.
 Science China Information Sciences: 1-17.

- Gadnayak, Khitish Kumar, Pankajini Panda, and Niranjan Panda.
 Haze Removal: An Approach Based on Saturation Component.
 In Intelligent Computing, Communication and Devices, pp. 281-287.
 Springer India, 2015.

- Fan, Xin, Yi Wang, Renjie Gao, and Zhongxuan Luo.
 Haze editing with natural transmission.

- Ling, Zhigang, Shutao Li, Yaonan Wang, He Shen, and Xiao Lu.
 Adaptive transmission compensation via human visual system for efficient single image dehazing.

Index Terms

Computer Science

Information Sciences
Keywords
Dark Channel Prior Genetic Algorithm Transmission Map