Abstract

A double gate FinFET can reduce drain induced barrier lowering and improve threshold (short channel effects). In this paper, a very important geometrical parameter, that is, the fin width of a FinFET has been analyzed. In this article, a double gate n channel FinFET with a gate length of 20nm has been reported. The transfer characteristics of the FinFET at various fin widths have been obtained at a supply voltage of 0.1 V. A comparison is then made between the transfer characteristics of various fin widths. It is observed that, at greater fin widths the drain current also increases as compared to that at shorter fin widths. Thus an increase in device performance is expected, but at the cost of increase in short channel effects. All the simulations have been performed in visual TCAD (Tiber CAD).

References

- Scott E. Thompson and Srivatsan Parthasarathy "Moore's law: the future of Si microelectronics", SWAMP Center, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611-6130 USA.
- Gordon E. Moore "Cramming more components onto integrated circuits,"
Impact of Varying Fin Width in an n-FinFET at 20nm Gate Length

Director, Research and Development Laboratories, Fairchild Semiconductor division of Fairchild Camera and Instrument Corp.
- J. P. Colinge "Multi-gate SOI MOSFETs", Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland, and Dept. of Electrical Engineering, university of California, Davis, CA, USA.
- Bin Yu, Leland Chang, Shibly Ahmed, Haihong Wang, Scott Bell, Chih-Yuh Yang, Cyrus Tabery, Chau Ho, Qi Xiang, Tsu-Jae King, Jeffrey Bokor, Chenming Hu, Ming-Ren Lin, and David Kyser "FinFET Scaling to 10nm Gate Length", Strategic Technology, Advanced Micro Devices, Inc., Sunnyvale; Department of EECS, University of California, Berkeley, USA.
- I. Flavia Princess Nesamani, Geethanjali Raveendran, Dr. V. Lakshmi Prabha "Performance Improvement of FinFET using NitrideSpacer", ECE Department, Karunya University, Government College of Technology, Coimbatore.
- Anurag Chaudhry and M. Jagadesh Kumar, Senior Member, IEEE "Controlling Short-Channel Effects in Deep-Submicron SOI MOSFETs for Improved Reliability: A Review".
- Digh Hisamoto, Member, IEEE, Wen-Chin Lee, Jakub Kedzierski, Hideki Takeuchi, Kazuya Asano, Member, IEEE, Charles Kuo, Erik Anderson, Tsu-Jae King, Jeffrey Bokor, Fellow, IEEE, and Chenming Hu, Fellow, IEEE "FinFET—A Self-Aligned Double-Gate MOSFET Scalable to 20 nm".
- S. L. Tripathi and R. A. Mishra "Performance Improvement of FinFet Using Spacer With High K Dielectric", Department of Electronics and Communication Engineering, MNNIT, Allahabad, India.

Index Terms
Computer Science
Communications

Keywords
TCAD silicon on insulator (SOI) DIBL Fin field effect transistor (FinFET)