Abstract

FinFET, a self–aligned double-gate MOSFET structure has been agreed upon to eliminate the short channel effects. In this thesis, we report the design, fabrication and physical characteristics of n-channel FinFET with physical gate length of 32nm using visual TCAD (steady state analysis). All the measurements were performed at a supply voltage of 1.5V and Tox=5nm. We elucidate the impact of doping concentration on the Performance of n-channel 32nm gate length FinFET at 22nm width. The drain current increases gradually when donor ion concentration in source/drain regions increases to 7e20 cm-3. Adding opposite type of source/drain impurity or decreasing acceptor ion concentration in channel further improves the performance of FinFET.
Devices Meeting-IEDM, 1999, DOI: 10.1109/IEDM.1999.823848
- F. Daugea, J. Preteta,c, S. Cristoloveanua, A. Vandoorenbb, L. Mathewb, J. Jomaaha, B.-Y. Nguyenb" coupling effects and channels separation in FinFETs" alMEP (UMR CNRS/INPG/UJF), ENSERG BP 257, 38016 Grenoble Cedex1, France; bMotorola, Digital DNA Lab., 3501 Ed Bluestein Blvd, Austin, TX 78721, USA; cSTMicroelectronics, 850 rue Jean Monnet, 38926 Crolles, France.
- Vikram V. Iyengar, Anil Kottantharayil "Extraction of the Top and Sidewall Mobility in FinFETs and the Impact of Fin-Patterning Processes and Gate Dielectrics on Mobility IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 5, MAY 2007.

Index Terms

- Computer Science
- Communications

Keywords

- FinFETs; CMOS; Drain Induced barrier lowering; Silicon-on-insulator