Let $G(V,E)$ simple connected graph, with $|E| = \varepsilon$. In this paper, we define an edge-set graph G_G constructed from the graph G such that any vertex $V_{s,i}$ of G_G corresponds to the i-th s-element subset of $E(G)$ and any two vertices $V_{s,i}$, $V_{k,m}$ of G_G
are adjacent if and only if there is at least one edge in the edge-subset corresponding to $V_{s,i}$ which is adjacent to at least one edge in the edge-subset corresponding to $V_{k,m}$ where s, k are positive integers. It can be noted that the edge-set graph G of a graph G is dependent on both the structure of G as well as the number of edges e. We also discuss the characteristics and properties of the edge-set graphs corresponding to certain standard graphs.

References

5. F. Harary, Graph Theory, Addison-Wesley, 1994.

Index Terms

Computer Science

Applied Mathematics

Keywords
A Study on Edge-Set Graphs of Certain Graphs

Edge-set graph, Total edge-degree of a graph, Edge-degree of vertex, Connected edge dominating set, Artificial edge-set element