Abstract

Let $G(V,E)$ simple connected graph, with $|E| = \varepsilon$. In this paper, we define an edge-set graph G_G constructed from the graph G such that any vertex V_s,i of G_G corresponds to the i-th s-element subset of $E(G)$ and any two vertices V_s,i, V_k,m of G_G correlated with this vertex.
are adjacent if and only if there is at least one edge in the edge-subset corresponding to
\(V_{s,i} \)
which is adjacent to at least one edge in the edge-subset corresponding to
\(V_{k,m} \)
where
\(s, k \)
are positive integers. It can be noted that the edge-set graph \(G \)
\(G \)
of a graph
\(G \)
is dependent on both the structure of
\(G \)
as well as the number of edges \(c \). We also discuss the characteristics and properties of the
edge-set graphs corresponding to certain standard graphs.

References

1. S. Arumugam and S. Velammal, Edge Domination in Graphs, Taiwanese Journal of
2. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press,
5. F. Harary, Graph Theory, Addison-Wesley, 1994.
8. T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM,
10. S. K. Vaidya and R. M. Pandit, Edge Domination in Some Path and Cycle Related
 Graphs, ISRN Discrete Mathematics, 2014 (2014), Article ID: 975812, 1-5., DOI:
 10.1155/2014/975812.

Index Terms

Computer Science

Applied Mathematics

Keywords
Edge-set graph, Total edge-degree of a graph, Edge-degree of vertex, Connected edge dominating set, Artificial edge-set element