Abstract

Let $G(V,E)$ simple connected graph, with $|E| = \varepsilon$. In this paper, we define an edge-set graph G_G constructed from the graph G such that any vertex V_s,i of G_G corresponds to the i-th s-element subset of $E(G)$ and any two vertices V_s,i, V_k,m of G_G
are adjacent if and only if there is at least one edge in the edge-subset corresponding to \(V_s,i \) which is adjacent to at least one edge in the edge-subset corresponding to \(V_{k,m} \) where \(s, k \) are positive integers. It can be noted that the edge-set graph \(G \) of a graph \(G \) is dependent on both the structure of \(G \) as well as the number of edges \(e \). We also discuss the characteristics and properties of the edge-set graphs corresponding to certain standard graphs.

References

5. F. Harary, Graph Theory, Addison-Wesley, 1994.

Index Terms

Computer Science Applied Mathematics

Keywords
Edge-set graph, Total edge-degree of a graph, Edge-degree of vertex, Connected edge dominating set, Artificial edge-set element