CFP last date
22 April 2024
Reseach Article

A Review on Reversible Logic Gates and its QCA Implementation

by Mohammad Abdullah-Al-Shafi, Md Shifatul Islam, Ali Newaz Bahar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 128 - Number 2
Year of Publication: 2015
Authors: Mohammad Abdullah-Al-Shafi, Md Shifatul Islam, Ali Newaz Bahar
10.5120/ijca2015906434

Mohammad Abdullah-Al-Shafi, Md Shifatul Islam, Ali Newaz Bahar . A Review on Reversible Logic Gates and its QCA Implementation. International Journal of Computer Applications. 128, 2 ( October 2015), 27-34. DOI=10.5120/ijca2015906434

@article{ 10.5120/ijca2015906434,
author = { Mohammad Abdullah-Al-Shafi, Md Shifatul Islam, Ali Newaz Bahar },
title = { A Review on Reversible Logic Gates and its QCA Implementation },
journal = { International Journal of Computer Applications },
issue_date = { October 2015 },
volume = { 128 },
number = { 2 },
month = { October },
year = { 2015 },
issn = { 0975-8887 },
pages = { 27-34 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume128/number2/22845-2015906434/ },
doi = { 10.5120/ijca2015906434 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:20:03.379959+05:30
%A Mohammad Abdullah-Al-Shafi
%A Md Shifatul Islam
%A Ali Newaz Bahar
%T A Review on Reversible Logic Gates and its QCA Implementation
%J International Journal of Computer Applications
%@ 0975-8887
%V 128
%N 2
%P 27-34
%D 2015
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Quantum Dot Cellular Automata (QCA) is a rising innovation which seems to be a good competitor for the next generation of digital systems and widely utilized as a part of advanced frameworks. It is an appealing substitute to ordinary CMOS innovation because of diminutive size, faster speed, extremely scalable feature, ultralow power consumption and better switching frequency. The realization of quantum computation is not possible without reversible logic. Reversible logic has enlarged operations in quantum computation. Generally reversible computing is executed when system composes of reversible gates. It has numerous fields of use as applied science, quantum dot cellular automata as well as low power VLSI circuits, low power CMOS, digital signal processing, computer graphics. In this paper, the quantum implementation of primitive reversible gate has been presented. The proposed gates have been designed and simulated using QCADesigner.

References
  1. Lent, C. S., Tougaw, P. D., & Porod, W. (1994, November). Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. In Physics and Computation, 1994. PhysComp'94, Proceedings., Workshop on (pp. 5-13). IEEE.
  2. Smith, C. G. (1999). Computation without current. Science, 284(5412), 274.
  3. Cho, H., & Swartzlander Jr, E. E. (2009). Adder and multiplier design in quantum-dot cellular automata. Computers, IEEE Transactions on, 58(6), 721-727.
  4. Frost, S. E., Rodrigues, A. F., Janiszewski, A. W., Rausch, R. T., & Kogge, P. M. (2002, February). Memory in motion: A study of storage structures in QCA. In First Workshop on Non-Silicon Computing (Vol. 2).
  5. Niemier, M. T., & Kogge, P. M. (1999). Logic in wire: using quantum dots to implement a microprocessor. In Electronics, Circuits and Systems, 1999. Proceedings of ICECS'99. The 6th IEEE International Conference on (Vol. 3, pp. 1211-1215). IEEE.
  6. Amlani, I., Orlov, A. O., Toth, G., Bernstein, G. H., Lent, C. S., & Snider, G. L. (1999). Digital logic gate using quantum-dot cellular automata. Science, 284(5412), 289-291.
  7. Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM journal of research and development, 5(3), 183-191.
  8. Bennett, C. H. (1973). Logical reversibility of computation. IBM journal of Research and Development, 17(6), 525-532.
  9. Merkle, R. C. (1993). Two types of mechanical reversible logic. Nanotechnology, 4(2), 114.
  10. Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge university press.
  11. Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme for efficient quantum computation with linear optics. Nature, 409(6816), 46-52.
  12. Vedral, V., Barenco, A., & Ekert, A. (1996). Quantum networks for elementary arithmetic operations. Physical Review A, 54(1), 147.
  13. Raghu kanth, B., Murali Krishna, B., Sridhar, M., and Santhi Swaroop, V.G. (2012). A Distinguish Between Reversible and Conventional Logic Gates. International Journal of Engineering Research and Applications, 2(2), 148-151.
  14. Saeedi, M., & Markov, I. L. (2013). Synthesis and optimization of reversible circuits-a survey. ACM Computing Surveys (CSUR), 45(2), 21.
  15. Thapliyal, H., & Ranganathan, N. (2010). Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM Journal on Emerging Technologies in Computing Systems (JETC), 6(4), 14.
  16. Bhagyalakshmi, H. R., & Venkatesha, M. K. (2010). Optimized reversible BCD adder using new reversible logic gates. arXiv preprint arXiv:1002.3994.
  17. Haghparast, M., & Navi, K. (2008). A novel reversible BCD adder for nanotechnology based systems. American Journal of Applied Sciences, 5(3), 282-288.
  18. Sayem, A. S. M., & Ueda, M. (2010). Optimization of reversible sequential circuits. arXiv preprint arXiv:1006.4570.
  19. Tougaw, P. D., & Lent, C. S. (1994). Logical devices implemented using quantum cellular automata. Journal of Applied physics, 75(3), 1818-1825.
  20. Lent, C. S., & Tougaw, P. D. (1997). A device architecture for computing with quantum dots. Proceedings of the IEEE, 85(4), 541-557.
  21. Benjamin, S. C., & Johnson, N. F. (1997). A possible nanometer-scale computing device based on an adding cellular automaton. Applied Physics Letters, 70(17), 2321-2323.
  22. Roohi, A., Khademolhosseini, H., Sayedsalehi, S., & Navi, K. (2011). A novel architecture for quantum-dot cellular automata multiplexer. International Journal of Computer Science Issues, 8(1).
  23. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G. H., & Porod, W. (2006). Majority logic gate for magnetic quantum-dot cellular automata. Science, 311(5758), 205-208.
  24. Morita, K. (2008). Reversible computing and cellular automata—A survey. Theoretical Computer Science, 395(1), 101-131.
  25. Bahar, A.N., Waheed, S., and Habib, M.A. 2014. A novel presentation of reversible logic gate in Quantum-dot Cellular Automata (QCA). 1st International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), IEEE, 1-6.
  26. Parhami, B. (2006, October). Fault-tolerant reversible circuits. In Signals, Systems and Computers, 2006. ACSSC'06. Fortieth Asilomar Conference on (pp. 1726-1729). IEEE.
  27. Bahar, A.N., Waheed, S., Uddin, M, A., and Habib, M.A. (2013). Double Feynman Gate (F2G) in Quantum-dot Cellular Automata (QCA). International Journal of Computer Science Engineering, 2(6), 351-355.
  28. Toffoli, T. (1980). Reversible computing Tech memo MIT. M IT/LCS/TM-151, MIT Lab for Comp. Sci.
  29. Bahar, A. N., Habib, M., & Biswas, N. K. (2013). A novel presentation of toffoli gate in quantum-dot cellular automata (QCA). Int J Comput Appl, 82(10), 1-4.
  30. Toffoli, T. (1980). Reversible computing (pp. 632-644). Springer Berlin Heidelberg.
  31. Bahar, A. N., Waheed, S., & Habib, M. A. (2015). An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA). Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 3(1), 219-225.
  32. Peres, A. (1985). Reversible logic and quantum computers. Physical review A, 32(6), 3266.
  33. Sarker, A., Bahar, A.N., Biswas, P.K., and Morshed, M. (2014). A Novel Presentation of Peres Gate (PG) in Quantum-Dot Cellular Automata (QCA), European Scientific Journal. 10 (21), 101-106.
  34. Vasudevan, D. P., Lala, P. K., Di, J., & Parkerson, J. P. (2006). Reversible-logic design with online testability. Instrumentation and Measurement, IEEE Transactions on, 55(2), 406-414.
  35. Bahar, A. N., Waheed, S., & Hossain, N. (2015). A new approach of presenting reversible logic gate in nanoscale. SpringerPlus, 4(1), 153.
  36. Islam, S., Farzana, S., & Ali Newaz Bahar, S. (2014). Area Efficient layout design of Multiply Complements Logic (MCL) Gate using QCA Technology. Global Journal of Researches in Engineering, 14(4), 7-10.
  37. Walus, K., Dysart, T. J., Jullien, G., & Budiman, R. A. (2004). QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. Nanotechnology, IEEE Transactions on, 3(1), 26-31.
  38. "QCADesigner" http://www.mina.ubc.ca/qcadesigner (accessed April 2015).
Index Terms

Computer Science
Information Sciences

Keywords

Quantum-dot Cellular Automata (QCA) Reversible logic Reversible gates QCA Designer