Abstract

This paper presents a non-dominated sorting flower pollination algorithm for dynamic economic emission dispatch (DEED) problem. Non-dominated sorting flower pollination algorithm is designed to construct the pareto optimal front and a fuzzy techniques extracts the best compromised solution of DEED. Results two standard of test systems are presented to exhibit its superior performance.

References

solving dynamic economic emission dispatch problem with valve point effects,” Electric Power
4. M. Basu, “ Artificial Immune System for dynamic economic dispatch,” Electrical power and
combined static/dynamic environmental economic dispatch,” Applied soft computing 2012; 12
(11) :3500-3513.
6. Yong Zhang, Dun-wei Gong, NaGeng, Xiao-yan Sun, “Hybrid bare-bones PSO for
dynamic economic dispatch with valve-point effects”, Applied soft Computing 18 (2014)
248-260.
8. Nnamdi I, Nwulu, Xiaohua Xia, “Multi-objective dynamic economic emission dispatch of
electric power generation integrated with game theory based demand response programs,”
9. Elaiw AM, Xia X, Shehata AM. Minimization of fuel costs and gaseous emissions of
electric power generation by model predictive control. Math Prob Eng 2013;2013. Article ID
906958.
11. Hemamalini S, S.Simon, “Dynamic economic dispatch using artificial bee colony for units
with valve point effect,” European transactions on electrical power 21(2011) 70-81.
Trans power system 1994; 9 (2) : 972-978.
13. IEEE current operating problems working group, “potential impacts of clean air
15. M. Basu, “ Particle swarm optimization based goal-attainment method for dynamic
search based algorithm to solve the dynamic economic dispatch problem with valve-point effect,
Energy Conversion and Management 51: 2062–2067.
17. Xingwen jiang, jianzhong zhou, Hao wang, yongchuan zhang. Dynamic environmental
dispatch using multiobjective differential evolution algorithm with expanded double
19. Basu M. Dynamic economic emission dispatch using evolutionary programming and
20. B. Panigrahi, P.V. Ravikumar, D. Sanjoy, Adaptive particle swarm optimization approach
for static and dynamic economic load dispatch, Energy Conversion and Management (2008) 49
:1407–1415.
21. V.R. Pandi, B.K. Panigrahi,. Dynamic economic load dispatch using hybrid swarm
intelligence based harmony search algorithm, Expert Systems with Applications (2011)
38:8509–8514.


Index Terms

Computer Science Algorithms

Keywords

Pareto Optimal Front, Predator Prey Optimization Flower Pollination Algorithm.