Abstract

In this work, a mathematical model for studying the impact of awareness programs on HIV/AIDS outbreak is proposed. The main idea is that people who are susceptible to infection can prevent it, if they are aware how the disease spreads and its consequences, and also the measures to control it. Various forms of communication media, educational, heath institutions and non-governmental organizations play a significant role to promote HIV/AIDS awareness amongst the most concerned people, namely couples and senior secondary school children. The developed HIV model is inspired from the classical SIR epidemic model where a control function is introduced to represent the effectiveness of an awareness program. The obtained optimal control, is characterized in terms of the optimality system, based on Pontryagin

References

3. MDG 6: 15 YEARS, 15 LESSONS OF HOPE FROM THE AIDS RESPONSE FACT
4. GLOBAL AIDS RESPONSE PROGRESS REPORTING (2014). Construction of Core
 indicators for monitoring the 2011 united nations Political declaration on HiV and Aids.
 http://www.unaids.org
6. PROGRESS REPORT ON THE GLOBAL PLAN (2014). Towards the elimination of new
 Public Information, 18.
 Implementation in Secondary Schools in Kisii County. The Impact of HIV/AIDS on Education
 Worldwide, 18, 2756.
 AIDS Education and Prevention, 23(6), 495-507.
 presentation given at the 15th International AIDS Conference, Bangkok, Thailand. Retrieved
 from http://www.csa.za.org/resources/catview/76-hivand-education
11. UNAIDS. (2002). Global coalition on women and AIDS. Global campaign for Education
 (2010). Accelerating the education sector response to HIV: Five years of experience from
 Sub-Saharan Africa. World Bank Publications.
 aspects of HIV infection. Taylor & Francis.
 mathematical theory of optimal processes (International series of monographs in pure and
 Springer-Verlag.
 variations and optimal control in economics and management (second edition) North Holland,
 New York.
 tuberculosis model. Discrete and Continuous Dynamical Systems Series B, 2(4), 473-482.
 tuberculosis model with undetected cases in Cameroon. Communications in Nonlinear Science
 strategy of Plasmodium vivax malaria transmission in Korea. Osong Public Health and
 Research Perspectives, 3(3), 128-136.
 applications and methods, 23(4), 199- 213.

Index Terms

Computer Science
Biomedical

Keywords

HIV/AIDS model, SIR model, Optimal control, Awareness program