Abstract

The design of a real-time system revolves heavily around a model known as a task schedule, which allots computational resources to executing tasks, i.e. programs. Many different scheduling algorithms have been invented, all of which depend on a set of temporal properties relevant to each task. One such property is the Worst Case Execution Time (WCET), intuitively described as the longest possible execution time. It is required to determine variation in execution times. If the variation is bounded then the system has time predictable behavior. Otherwise, we cannot provide any guaranties for the worst case execution time and the architecture is time unpredictable. Embedded controllers are expected to finish their tasks reliably within time bounds. Task scheduling must be performed essential: upper bound on the execution times of all tasks statically known Commonly called the Worst-Case Execution Time (WCET). To use the GPUs in real time systems it is required to have time predictable behavior. However, it is hard to give an estimation of the WCET of a GPU program.

In this paper, we focused on comparative analysis of various WCET estimate techniques with
their results evaluations as well as observations.

References

1. P. Puschner and A. Schedl, “Computing Maximum Task Execution Times - A
2. J. Wegener and M. Grochtmann, “Verifying timing constraints of realtime systems by
5. Guillem Bernat Antoine Colin Stefan M. Petters, “WCET Analysis of Probabilistic Hard
 Real-Time Systems”, Real-Time Systems Research Group Department of Computer Science
 University of York, UK, 2002.
 2002.
8. A. Aho, R. Sethi, M. S. Lam, and J. Ullman, Compilers: Principles, Techniques and Tools,
 2nd ed. Addison-Wesley, 2006.
9. A. Betts, “Hybrid Measurement-Based WCET Analysis using Instrumentation Point
10. Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
 David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
 Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenstro¨m. The worst-case
 execution time problem — overview of methods and survey of tools. ACM Transactions on
 Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P.
 Stenstro¨m. “The Worst-Case Execution-Time Problem—Overview of Methods and Survey of
12. Andreas Ermedahl, Johan Fredriksson, Jan Gustafsson, “Deriving the Worst-Case
13. Ma¨lardalen University WCET project homepage, http://www.mrtc.mdh.se/projects/wcet,
 May 2010.
 Timing Traces”, 16th IEEE International Conference on Engineering of Complex Computer
 Systems, 2011.
Index Terms

Computer Science

Applied Mathematics

Keywords

WCET, IPG, ETP, Static Analysis, Hybrid Analysis, GPU.