Abstract

Measurability is a concept in elastic scaling that is based on two assumptions: (1) every cloud service provider is cautious, i.e., does not exclude any cloud consumer’s Unpredictable Workload resource pooling pattern choice from consideration, and (2) every cloud service provider respects the cloud consumer’s Unpredictable Workload resource pooling pattern preferences, i.e., deems one cloud consumer’s Unpredictable Workload resource pooling pattern choice to be infinitely more likely than another whenever it premises the cloud consumer to prefer the one to the other. In this paper we provide a new approach for measurability, by assuming that cloud service providers have asymmetric Unpredictable Workload resource pooling pattern about the cloud consumer’s Unpredictable Workload utilities. We show that, if the uncertainty of each cloud service provider about the cloud consumer’s Unpredictable Workload utilities vanishes gradually in some regular manner, then the Unpredictable Workload resource pooling pattern choices it can measurably make under common conjecture in measurability are all actually measureable in the original elastic scaling with no uncertainty about the cloud consumer’s utilities.
What is a minimum of Unpredictable Workload Pattern over all Elastic Scaling in Cloud Computing?

References

What is a minimum of Unpredictable Workload Pattern over all Elastic Scaling in Cloud Computing?

 MapReduce Structure into Task Consequences, Performance? International Journal of
18. Ravi (Ravinder) Prakash G, Kiran M. "On the MapReduce Arrangements of Cartesian
 product Specific Expressions". International Journal of Computer Applications 112(9):34-41,
 February 2015.
19. Ravi (Ravinder) Prakash G, Kiran M., On Job Chaining MapReduce Meta Expressions
 of Mapping and Reducing Entropy Densities. International Journal of Computer Applications
20. Ravi (Ravinder) Prakash G, Kiran M. "On Chain Folding Problems of Chain Mapper and
 Chain Reducer Meta Expressions". International Journal of Computer Applications 116(16):
 35-42, April 2015.
21. Ravi (Ravinder) Prakash G, Kiran M."On Job Merging MapReduce Meta Expressions for
 Multiple Decomposition Mapping and Reducing". International Journal of Computer Applications
22. Ravi (Ravinder) Prakash G, Kiran M." Characterization of Randomized External Source
 Output Map Reduce Expressions". International Journal of Computer Applications 123(14):9-16,
 August 2015.
23. Ravi (Ravinder) Prakash G, Kiran M., Does there Exist Pruning Decomposition for
 MapReduce Expressions Arrangements?. International Journal of Computer Applications
 for which there exist Map Reduce Configurations? International Journal of Computer
 Applications 128(12): 14-21, October 2015.
25. Ravi (Ravinder) Prakash G. and Kiran M., Is It True for Static Scaling Cloud Model there
 Exists a Centrally Asymmetric Static Workload Pattern? Communications on Applied Electronics
 Patterns does it have an Elastic Scaling? Communications on Applied Electronics 4(2): 17-26,
 January 2016.
27. Ravi (Ravinder) Prakash G. and Kiran M., How can Periodic Workload Cloud Pattern
 benefit from Periodically Peaking Utilization?. International Journal of Applied Information
 Workload patterns for Periodic Static Scaling. International Journal of Applied Information

Index Terms

Computer Science

Distributed Systems
What is a minimum of Unpredictable Workload Pattern over all Elastic Scaling in Cloud Computing?

Keywords

Cloud service provider, cloud consumer, Unpredictable Workload, asymmetric, resource pooling pattern, utilities, elastic scaling, behavioral, measurably