CFP last date
20 March 2024
Reseach Article

Numerical Analysis of 3D Model of the SSAW Separator System

by Bahareh Haddadi, Morteza Fathipour
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 141 - Number 12
Year of Publication: 2016
Authors: Bahareh Haddadi, Morteza Fathipour
10.5120/ijca2016909914

Bahareh Haddadi, Morteza Fathipour . Numerical Analysis of 3D Model of the SSAW Separator System. International Journal of Computer Applications. 141, 12 ( May 2016), 7-12. DOI=10.5120/ijca2016909914

@article{ 10.5120/ijca2016909914,
author = { Bahareh Haddadi, Morteza Fathipour },
title = { Numerical Analysis of 3D Model of the SSAW Separator System },
journal = { International Journal of Computer Applications },
issue_date = { May 2016 },
volume = { 141 },
number = { 12 },
month = { May },
year = { 2016 },
issn = { 0975-8887 },
pages = { 7-12 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume141/number12/24834-2016909914/ },
doi = { 10.5120/ijca2016909914 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T23:43:20.155661+05:30
%A Bahareh Haddadi
%A Morteza Fathipour
%T Numerical Analysis of 3D Model of the SSAW Separator System
%J International Journal of Computer Applications
%@ 0975-8887
%V 141
%N 12
%P 7-12
%D 2016
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we investigate a microfluidic device designed for separation of particles having different densities. Separating mechanism employs Standing Surface Acoustic Waves (SSAWs). Simulation studies have shown that Polyethylene microspheres with diameter of 10µm, having a density of 1200 kg/m3, can easily be detected from the same sized Melamine microspheres having a density equal to 1710 kg/m3.

References
  1. C. W. Yung, J. Fiering, A. J. Mueller and D. E. Ingber, Micromagnetic-microfluidic blood cleansing device, Lab Chip, 2009, 9, 1171–1177.
  2. O. Lara, X. Tong, M. Zborowski and J. J. Chalmers, Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation, Exp. Hematol.,2004, 32, 891–904.
  3. N. Ye, J. Qin, W. Shi, X. Liu and B. Lin, Cell-based high content screening using an integrated microfluidic device, Lab Chip, 2007, 7, 1696–1704.
  4. P. O. Krutzik, J. M. Crane, M. R. Clutter and G. P. Nolan, Flow Cytometry in Drug Discovery and Development, Nat.Chem. Biol., 2008, 4, 132–142.
  5. J. Seo, M. H. Lean and A. Kole, Membrane-free microfiltration by asymmetric inertial migration, Appl. Phys. Lett., 2007, 91, 033901-0339013.
  6. N. Pamme, Continuous flow separations in microfluidic devices, Lab Chip, 2007, 7, 1644–1659.
  7. C. Blattert, R. Jurischka, A. Schoth, P. Kerth and W. Menz, Fabrication and testing ofnovel blood separation devices based on microchannel bend structures, Proc.SPIE–Int. Soc. Opt. Eng., 2004, 5345, 17–25.
  8. B. Qu, Z. Wu, F. Fang, Z. Bai, D. Yang and S. Xu, A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labelling, Anal Bioanal.Chem., 2008, 392, 1317–1324.
  9. K. McCloskey, J. Chalmers and M. Zborowski, Magnetic cell separation: characterization of magnetophoretic mobility, Anal. Chem., 2003,75, 6868–6874.
  10. M. Yamada, M. Nakashima and M. Seki, Pinched Flow Fractionation:  Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel, Anal. Chem., 2004, 76,5465–5471.
  11. Martin, S. P., Townsend, R. J., Kuznetsova, L. A., Borthwick, K. A. J., Hill, M., McDonnell, M. B., and Coakley, W. T., Spore and micro-particle capture on an immunosensor surface in an ultrasound standing wave system, Biosensors and Bioelectronics, 21(5), 758-767 (2005).
  12. Petersson, F., Nilsson, A., Holm, C., Jonsson, H., and Laurell, T., Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces,”Lab on a Chip, 5(1), 20-22 (2005).
  13. Jung, B., Fisher, K., Ness, K. D., Rose, K. A., and Mariella, R. P., Acoustic Particle Filter with Adjustable Effective Pore Size for Automated Sample Preparation, Analytical Chemistry, 80(22), 8447-8452 (2008).
  14. Koklu, M., Sabuncu, A. C., and Beskok, A., Acoustophoresis in shallow microchannels, Journal of Colloid and Interface Science, 351(2), 407-414 (2010).
  15. Cushing, K. W., Piyasena, M. E., Carroll, N. J., Maestas, G. C., López, B. A., Edwards, B. S., Graves, S. W.,and López, G. P., Elastomeric Negative Acoustic Contrast Particles for Affinity Capture Assays, Analytical Chemistry, 85(4), 2208-2215 (2013).
  16. Xia, Y. N., and Whitesides, G. M., Soft lithography,Annual Review of Materials Science, 28, 153-184 (1998).
  17. Ramli, N.A. , Nordin, A.N. , Design and modeling of MEMS SAW resonator on Lithium Niobate , 2011 4th International Conference on Mechatronics (ICOM), 17-19 May 2011, Kuala Lumpur, Malaysia.
  18. Shi, J. J., Huang, H., Stratton, Z., Huang, Y. P., and Huang, T. J., Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW), Lab on a Chip, 9(23), 3354-3359 (2009).
  19. Nam, J., Lee, Y., and Shin, S., Size-dependent microparticles separation through standing surface acoustic waves, Microfluidics and Nanofluidics, 11(3), 317-326 (2011).
  20. Nam, J., Lim, H., Kim, D., and Shin, S., Separation of platelets from whole blood using standing surface acoustic waves in a microchannel, Lab on a Chip, 11(19), 3361-3364 (2011).
  21. Yosioka, K., and Kawasima, Y., Acoustic radiation pressure on a compressible sphere, Acustica, 5, 167–173 (1955).
  22. D. English, B.R. Andersen, Single-step separation of red blood-cells, granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll–Hypaque, Journal of Immunological Methods 5 (1974) 249–252.
  23. A. Rambaldi, G. Borleri, G. Dotti, P. Bellavita, R. Amaru, A. Biondi, T. Barbui, Innovative two-step negative selection of granulocyte colony-stimulating factor-mobilized circulating progenitor cells: adequacy for autologous and allogeneic transplantation, Blood 91 (1998) 2189–2196.
  24. O. Samura, A. Sekizawa, D.K. Zhen, V.M. Falco, D.W. Bianchi, Comparison of fetal cell recovery from maternal blood using a high density gradient for the initial separation step: 1.090 versus 1.119 g/ml, Prenatal Diagnosis 20 (2000) 281–286.
  25. T. Chesnot, J. Schwartzbrod, Quantitative and qualitative comparison of density-based purification methods for detection of Cryptosporidium oocysts in turbid environmental matrices, Journal of Microbiological Methods 58 (2004) 375–386.
  26. T. Morijiri, S. Sunahiro, M. Senaha, M. Yamada, M. Seki, Sedimentation pinchedflowfractionation for size- and density-based particle sorting in microchannels, Microfluidics and Nanofluidics 11 (2011) 105–110.
  27. C.H. Hsu, D. Di Carlo, C.C. Chen, D. Irimia, M. Toner, Microvortex for focusing, guiding and sorting of particles, Lab on a Chip 8 (2008) 2128–2134.
  28. O. Ae Gyoung, L. Dong Woo, C. Young-Ho, A continuous cell separator based on buoyant force in dissimilar density fluid flows, in: 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 2010, pp.1023–1026.
  29. A.A. Oliner et al., Acoustic Surface Waves. Springer-Verlag, Berlin (1978).
  30. M. Settnes and H. Bruus (2012) “Forces acting on a small particle in an acoustical field in a viscous fluid.
Index Terms

Computer Science
Information Sciences

Keywords

SSAW IDT density-based.