CFP last date
20 March 2024
Reseach Article

Brain Tumor Analysis of Rician Noise Affected MRI Images

by Renukalatha S., K.V. Suresh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 141 - Number 14
Year of Publication: 2016
Authors: Renukalatha S., K.V. Suresh

Renukalatha S., K.V. Suresh . Brain Tumor Analysis of Rician Noise Affected MRI Images. International Journal of Computer Applications. 141, 14 ( May 2016), 26-33. DOI=10.5120/ijca2016909991

@article{ 10.5120/ijca2016909991,
author = { Renukalatha S., K.V. Suresh },
title = { Brain Tumor Analysis of Rician Noise Affected MRI Images },
journal = { International Journal of Computer Applications },
issue_date = { May 2016 },
volume = { 141 },
number = { 14 },
month = { May },
year = { 2016 },
issn = { 0975-8887 },
pages = { 26-33 },
numpages = {9},
url = { },
doi = { 10.5120/ijca2016909991 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
%0 Journal Article
%1 2024-02-06T23:43:42.846674+05:30
%A Renukalatha S.
%A K.V. Suresh
%T Brain Tumor Analysis of Rician Noise Affected MRI Images
%J International Journal of Computer Applications
%@ 0975-8887
%V 141
%N 14
%P 26-33
%D 2016
%I Foundation of Computer Science (FCS), NY, USA

Magnetic Resonance Imaging (MRI) established itself as a key imaging modality in diagnosis and treatment of brain tumors. Automatic segmentation of tumors becomes a tedious task due to complex anatomical brain structure. In addition, presence of noise degrades the quality of MRI scans. MRI images are usually corrupted by Rician noise which would mislead the image analysis algorithms and results in improper diagnosis of the diseases. Also, poor tumor boundary becomes a major hurdle for the subsequent stages of tumor analysis such as: feature extraction, classification and quantification. Classification accuracy mainly depends on quality of the denoised images and sharpness of the tumor boundary. This paper investigates the performance evaluation of different image matting techniques to extract tumor from Rician noise affected MRI brain images.

  1. El-Sayed A. El-Dahshan ,“Computer-aided diagnosis of human brain tumor through MRI”: A survey and a new algorithm”, Expert Systems with Applications, Elsevier, Volume 41, Issue 11, pp. 5526–5545., September 2014.
  2. Halder, A., Giri, C., Halder, A. Brain Tumor Detection Using Segmentation Based Object Labeling Algorithm. Electronics Communication and Instrumentation (ICECI) 201. International Conference, vol. no., pp.1, 4. 16-17 Jan. 2014.
  3. Jason J., Corso., Eitan Sharon., ShishirDube., Suzie El-Saden., Usha Sinha., Alan Yuille. Efficient Multilevel Brain Tumor Segmentation with Integrated Bayesian Model Classification. IEEE Transactions on Medical imaging Vol., 27, Issue 5. pp. 629-640. May 2008.
  4. Tao Wang., Irene Cheng., AnupBasu. Fluid Vector Flow and Applications in Brain Tumor Segmentation. IEEE Transactions on Biomedical Engineering, Vol., 56, No. 3, March 2009.
  5. Tanoori, B., Azimifar, Z., Shakibafar, A., and Katebi, S. Brain Volumetry: An active contour model-based segmentation followed by SVM-based classification. Computers in Biology and Medicine, Vol., 41(8), pp. 619–632, 2011.
  6. Jafari, M., and Kasaei, S. Automatic Brain Tissue Detection in MRI Images Using Seeded Region Growing Segmentation and Neural Network Classification. Australian Journal of Basic and Applied Sciences. Vol., 5(8), pp. 1066–1079, 2011.
  7. BaidyaNathSaha. Nilanjan Ray., Russell Greiner., Albert Murtha., Hong Zhang. Quick Detection of Brain Tumors and Edemas: A Bounding Box Method Using Symmetry. Computerized Medical Imaging and Graphics. ISSN 08956111, pp. 95-107, 2012.
  8. ShiyongJi. Benzheng Wei., Zhen Yu., Gongping Yang and Yilong Yin. A New Multistage Medical Segmentation Method Based on Super pixel and Fuzzy Clustering. Hindawi Publishing Corporation Computational and Mathematical Methods in Medicine. Article ID 747549. 2014.
  9. Meiyan Huang., Wei Ynag., YaoWu,JunJiang., Wufan Chen. Brain Tumor Segmentation Based on Local Independent Projection-Base Classification. IEEE transactions on Biomedical Engineering, Vol., 61, No. 10, pp. 2633-2645, October 2014.
  10. Macovski. A. Magnetic Resonance in Medicine. 36 (3). 494. doi:10.1002/mrm.1910360327, 1996.
  11. Nowak. R, Wavelet based Rician noise removal in MRI, IEEE Transactions on Image Processing 8 (10). 1408. 1999.
  12. Nobi. M.N. and Yousuf. M. A. A New Method to Remove Noise in Magnetic Resonance and Ultrasound Images. Journal of Scientific Research., 3 (1). 81-89., 2011.
  13. Chan., R. H., Ho., C., and Nikola. M. Salt and pepper noise removal in CT images using median filtering, IEEE Transactions on image processing, 14 (10), 1479. 2005.
  14. Milindkumar V., Strode. Dr. Prashant R., Deshmukh. Performance Evaluation of Rician Noise Reduction Algorithm in Magnetic Resonance Images. Journal of Emerging Trends in Computing and Information Sciences. Vol., 2 CIS Journal ISSN 2079- 8407. pp. 39-44., Special Issue 2010-11.
  15. IsshaaAarya., Danchi Jiang., and Timothy Gale. Signal Dependent Rician Noise Denoising Using Nonlinear Filter. Lecture Notes on Software Engineering, Vol., 1, No., 4, November 2013.
  16. Arsenault H. and Denis, M. Image processing in Signal-Dependent noise. Can. J. Phys., Vol., 61, No., 2, pp. 309-317., 1983.
  17. Gedraite, E.S., Hadad, M. Investigation on the Effect of A Gaussian Blur In Image Filtering and Segmentation. IEEE conference publication held at Zadar. ISSN- 1334-2630. Issue Date. 14-16. September 2011.
  18. Perona, P., and Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern. Anal. Machine. Intel. Vol., 12. No., 7. pp. 629- 639. July 1990.
  19. Gerig, O., Kubler, R., Kikinis, and Jolesz F.A. Nonlinear anisotropic filtering of MRI data. Medical Imaging. IEEE Transactions on, 11(2):221–232, 1992.
  20. Krissian. And S. Aja-Fernndez, Noise-Driven Anisotropic Diffusion Filtering of MRI. IEEE Transactions on Image Processing, 18(10):2265–2274, 2009.
  21. Garg, R., Mittal, B., Garg, S. Histogram Equalization techniques for image enhancement. IJECT. Vol., 2, pp. 107-111., 2011.
  22. Kaur, M., Kaur, J., Kaur, J. Survey of Contrast Enhancement Techniques Based On Histogram Equalization. International Journal of Advanced Computer Science and Applications, Vol. 2, 2011.
  23. Otsu. N. A Threshold Selection Method from Gray-level Histograms. IEEE Transactions on Systems, Man & Cybernatics, Vol., 9, Issue 1. pp. 62-66., 1979.
  24. Tirpude, NN*. Welekar RR. Effect of Global Thresholding on Tumor-Bearing Brain MRI Images. International Journal of Engineering and Computer Science ISSN: 2319- 7242. Vol., 2. Issue 3. pp. 728-731. March 2013.
  25. Yen, C., Chang, F.J., Chang, S. A New Criterion for Automatic Multilevel Thresholding. IEEE Transactions on Image Processing. I, P-4., pp. 370–378., 1995.
  26. Gonzalez, R., Woods, R., and Eddins, S. Digital Image Processing Using MATLAB. Pearson Education.
  27. Weglinski, T., and Fabijanska, A. Brain Tumor Segmentation from MRI Data Sets Using Region Growing Approach. In Proceedings of the 7th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH ’11). pp. 185–188. May 2011.
  28. Levin, A., Lischinski, D., and Weiss. Y. A Closed Form Solution to Natural Image Matting. Hebrew University Technical Report. 2006.
  29. Ruzon, M., Tomasi C. Alpha Estimation in Natural Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Vol., 1, pp. 18.25, June 2000.
  30. Ziming Zeng, JueWang, C., BernieTiddeman, A., and ReyerZwiggelaar. Unsupervised Tumour segmentation in PET using local and global intensity-fitting active surface and alpha matting. Computers in Biology and Medicine. Elsvier, 2013.
  31. Chuang, Y.Y., Brain, C., Salesin, D. H., Szelsiki, R. A Bayesian Approach to Digital Matting. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR. Vol., 2, pp. 264-71. 9th-14th December 2001.
  32. Jian Sin, JiyayaJiya, Chi- Keung Tang, Heung-Yueng Shum. Poisson Matting, SIGGRAPH 2004. ACM Transaction on Graphics. 23. 3., pp. 315-321., April 2004.
Index Terms

Computer Science
Information Sciences


MRI Brain tumor Rician noise Region of interest (ROI) image matting and Sensitivity.