Abstract

The need for detecting and locating concealed metallic objects and contraband items increases in importance as the issues of security becomes of great concern. In the field of metal detectors, the research is being geared towards the production of detectors with fast settling times and high discriminating ability. This paper proposes a method for designing a computer-based ferromagnetic metal detector which can be employed for security applications. The LabVIEW software has been used to program the detector. It is a novel programming language from National Instruments that is robust, highly parallel and eliminates most of syntactical details associated with text based programming languages. Because of this, the development time of the detector is reduced by a significant factor. A recognition algorithm has also been designed to discriminate between ferromagnetic items by their mass and size. To improve the settling time of the detector, components with fast response times have been chosen, making the detector’s settling time to be approximately 1.1 sec. In addition, the screening process has been made more convenient by connecting the detector to a remote computer through data socket.
networking. The remote computer enables the detector to be monitored remotely in real time
and also acts as a central database where the screening information is sent for further storage.

The system hardware comprises of ten fluxgate magnetic field sensors (FLC 100) with response
time of 1sec and sensitivity of 1V/50μT, a wooden frame in form of a portal, connecting cables,
USB DAQ 2833, USB video camera, wireless network adapter and two laptop computers.

References

1. V.P. Czippott, “Detection of concealed weapon using magnetic tensors tracking” final
2. C. Sigrist, “Metal detectors for humanitarian demining, patent search and analysis”, Swiss
3. G.S. Burns, “In-situ vehicle classification using an ILD and a magneto resistive sensor
 array”, Final report, Center for Transportation Studies University of Minenesota, Duluth, United
 States, 2009.
4. B. Bjerrum, “Concept development for the next generation of metal detector”, Master’s
5. S.P. Kalyn, “Indoor localization using magnetic fields”. Dissertation for the degree of
6. B. Sajjad, “Identification and localization on a wireless magnetic sensor network”, MSc.
 thesis, Department of Electrical and Electronic Engineering. Middle East technical University,
 turkey, 2012.
 with PC”, International Journal of Scientific & Technology Research, ISSN 2277-8616, 4:
9. T. Jeffrey and K. Jim “LabVIEW for everyone 3rd edition”, Prentice Hall. Indiana, USA,
 2006.
 University of Missouri-Columbia, USA, 2005.
11. S. Breiner, “Application manual for portable magnetometers. Geometric”, San Jose,
 California, USA, 1999.
12. B. C. Brunschini, “A multi-disciplinary analysis of frequency domain metal detectors for
 humanitarian demining”. PhD. thesis, Department of Electronics and Information Processing,
 Vrije University Brussels, Belgium, 2002.
 States, 2008.
 International Journal for Scientific Research &Development, Issue
 03ISSN:2321-0613,4:364-366 2014.
16. G.V. Keller, “Non-obtrusive detection system and method for discriminating between

Index Terms

Computer Science Security

Keywords

Magnetic field sensors (FLC 100), LabVIEW programming, USB Video camera, USB DAQ 2833, Datasocket Networking.