Abstract

Digital image presents information in two-dimensional data, which can be used as feedback measurement for robot visual servoing control. Median filter and morphological operation are used for object detection and extraction its features. Kalman filter is applied for visual measurements that contain noises and uncertainties captured by video camera over the time. Sinusoidal Kalman filter and sinusoidal measurement model is used. The derivations of noise’s process and matrices’ control are presented. The Kalman filter is tuned by using PSO optimization to produce values closer to the true spatial measurements of the target. A developed PSO is proposed in which adaptive inertia weight chaotic PSO algorithm and velocity constriction factor are used in order to overcome premature and local optimum convergence. Simulation for tracking object on circular path are presented. Experimental result shows good performance of the proposed method for noisy measurement of the target.

References
5. R. K. Jatoth and Dr. T. K. Kumar, “Swarm Intelligence Based Tuning of Unscented
 Kalman Filter for Bearings Only Tracking,” Int. J. of Recent Trends in Engineering and
 Technology, Vol. 2, No. 5, Nov 2009, DOI: 01.IJRTET.02.05.335.
 based on Kalman filter using Genetic Algorithm and Particle Swarm Optimization,” IEEE 2nd
 International Conference on Computer and Automation Engineering (ICCAE), Vol. 5, 2010,
 pp.359-363, DOI: 10.1109/ICCAE.2010.5451413
7. R. K. Jatoth and T. K. Kumar, “Particle Swarm Optimization Based Tuning of Extended
 Kalman Filter for Maneuvering Target Tracking,” International Journal Of Circuits, Systems and
8. G. Lin, Z. Jing and Z. Liu, “Tuning of extended kalman filter using improved particle swarm
 optimization for sensorless control of induction motor," Journal of Computational Information
 Systems 10(6):2455-462 · January 2014. DOI: 10.12733/jcis9762
12. R. C. Marsal, “Morphological And Statistical Analysis Of Biomaterials with Applications in
 Tissue Engineering by Means of Microscopy Image Processing,” IEEE Latin America
13. G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” University of North
 Carolina at Chapel Hill Chapel Hill, July 24, 2006.
17. A. Alfi, “Particle Swarm Optimization Algorithm with Dynamic Inertia Weight for Online
 Parameter Identification Applied to Lorenz Chaotic System,” ICIC International journal, Vol.8,
 No.2, February 2012.
18. A. Djowehir, T. Kanya, and M. Shenglin, “A Modified Particle Swarm Optimization with
 Nonlinear Decreasing Inertia Weight Based PID Controller for Ultrasonic Motor,” International

Index Terms

Computer Science Information Sciences

Keywords

Circular path, Kalman filter, Particle swarm optimization, Robot manipulator, State space representation, Visual servoing.