Abstract

This paper describes a method for constructing a minimal deterministic finite automaton (DFA) from a regular expression. It is based on a set of graph grammar rules for combining many graphs (DFA) to obtain another desired graph (DFA). The graph grammar rules are presented in the form of a parsing algorithm that converts a regular expression R into a minimal
Construction of a Minimal Deterministic Finite Automaton from a Regular Expression

deterministic finite automaton \(M \) such that the language accepted by DFA \(M \) is same as the language described by regular expression \(R \). The proposed algorithm removes the dependency over the necessity of lengthy chain of conversion, that is, regular expression \(\rightarrow \) NFA with \(\epsilon \)-transitions \(\rightarrow \) NFA without \(\epsilon \)-transitions \(\rightarrow \) DFA \(\rightarrow \) minimal DFA. Therefore the main advantage of our minimal DFA construction algorithm is its minimal intermediate memory requirements and hence, the reduced time complexity. The proposed algorithm converts a regular expression of size \(n \) in to its minimal equivalent DFA in \(O(n \log_2 n) \) time. In addition to the above, the time complexity is further shortened to \(O(n \log n) \) for \(n \geq 75 \).

Reference

- Hagenah, C. and A. Muscholl [1998]. “Computing epsilon-free NFA from regular

- Thompson, K. [1968]. “Regular expression search algorithms”. Communications of the ACM. vol. 11, no. 6, pp. 419-422.

Construction of a Minimal Deterministic Finite Automaton from a Regular Expression

Index Terms

Computer Science

Algorithms

Key words

Alphabet

Automaton Construction

Combined State

Union

Concatenation

Kleene Closure

Minimization

Transition