Abstract

This paper describes a method for constructing a minimal deterministic finite automaton (DFA) from a regular expression. It is based on a set of graph grammar rules for combining many graphs (DFA) to obtain another desired graph (DFA). The graph grammar rules are presented in the form of a parsing algorithm that converts a regular expression R into a minimal
deterministic finite automaton M such that the language accepted by DFA M is same as the
language described by regular expression R. The proposed algorithm removes the dependency
over the necessity of lengthy chain of conversion, that is, regular expression --> NFA with
ε-transitions --> NFA without ε-transitions --> DFA --> minimal DFA. Therefore the main
advantage of our minimal DFA construction algorithm is its minimal intermediate memory
requirements and hence, the reduced time complexity. The proposed algorithm converts a
regular expression of size n in to its minimal equivalent DFA in O(n.log2n) time. In addition to
the above, the time complexity is further shortened to O(n.logen) for n ≥ 75.

Reference

- Antimirov, V. [1996]. “Partial derivatives of regular expressions and finite automata
- Ben-David, S., D. Fisman, and S. Ruah [2008]. “Embedding finite automata within regular
- Berry, G. and R. Sethi [1986]. “From regular expressions to deterministic automata”.
- Bruggemann-Klein A. [1993]. “Regular expressions into finite automata”. Theoretical
 Computer Science. vol. 120, no. 2, pp. 197-213.
 the ACM (J. ACM). vol. 16, no. 1, pp. 132-144.
- Carrasco, R. C., J. Daciuk, and M. L. Forcada [2009]. “Incremental construction of
 minimal tree automata”. Algorithmica. vol. 55, no. 1, pp. 95-110.
- Carrasco, R. C. and M. L. Forcada [2001]. “Incremental construction and maintenance of
 minimal finite-state automata”. Computational Linguistics. vol. 28, no. 2, pp. 207-216.
 NFAs”. In Proceedings of the 3rd Annual Symposium on Combinatorial Pattern Matching.
 Inc. New York.
 of minimal acyclic finite-state automata”. Computational Linguistics. vol. 26, no. 1, pp. 3-16.
- Geffert, V. [2003]. “Translation of binary regular expressions into nondeterministic ε-free
 automata with o(nlogn) transitions”. Journal of Computer and System Sciences. vol. 66, no. 3,
 pp. 451-472.
 Press. Ohio State University, Columbus, Ohio.
- Hagenah, C. and A. Muscholl [1998]. “Computing epsilon-free NFA from regular

- Thompson, K. [1968]. “Regular expression search algorithms”. Communications of the ACM. vol. 11, no. 6, pp. 419-422.

Construction of a Minimal Deterministic Finite Automaton from a Regular Expression

Index Terms

Computer Science

Algorithms

Key words

Alphabet

Automaton Construction

Combined State Union

Concatenation

Kleene Closure

Minimization

Transition