Abstract

This paper describes a method for constructing a minimal deterministic finite automaton (DFA) from a regular expression. It is based on a set of graph grammar rules for combining many graphs (DFA) to obtain another desired graph (DFA). The graph grammar rules are presented in the form of a parsing algorithm that converts a regular expression R into a minimal
deterministic finite automaton M such that the language accepted by DFA M is same as the language described by regular expression R. The proposed algorithm removes the dependency over the necessity of lengthy chain of conversion, that is, regular expression --> NFA with ε-transitions --> NFA without ε-transitions --> DFA --> minimal DFA. Therefore the main advantage of our minimal DFA construction algorithm is its minimal intermediate memory requirements and hence, the reduced time complexity. The proposed algorithm converts a regular expression of size n in to its minimal equivalent DFA in O(n.log2n) time. In addition to the above, the time complexity is further shortened to O(n.logen) for n ≥ 75.

Reference

- Hagenah, C. and A. Muscholl [1998]. “Computing epsilon-free NFA from regular
expressions in $o(n \log^2(n))$ time”. In Proceedings of the 23rd International Symposium on
- Hopcroft, J. E. and J. Ullman [1979]. Introduction to Automata Theory, Languages and
4, pp. 565-588.
- Ilie L. and S. Yu [2003]. “Follow automata”. Information and Computation. vol. 186, no. 1,
pp. 140-162.
efficient lexical processors using finite state techniques”. Communications of the ACM. vol. 11,
no. 12, pp. 805-813.
- Leiss, E. [1980]. “Constructing a finite automaton for a given regular expression”. ACM
Special Interest Group on Algorithms and Computation Theory (ACM SIGACT News). vol. 12,
no. 3, pp. 81-87.
- Mayr, Ernst W., G. Schmidt, and G. Tinhofer (eds.) [1995]. Graph-Theoretic Concepts in
Computer Science. Lecture notes in Computer Science no. 903. Springer-Verlag,
Berlin/Heidelberg, New York.
- Möhring, R. H. (ed.) [1991]. Graph-Theoretic Concepts in Computer Science, 16th
International Workshop, WG ’90, Berlin, Germany, June 20-22, 1990, Proceedings. Lecture
Notes in Computer Science no. 484. Springer. London, UK.
- Rytter, W. [1989]. “A note on optimal parallel transformations of regular expressions to
- Thompson, K. [1968]. “Regular expression search algorithms”. Communications of the
ACM. vol. 11, no. 6, pp. 419-422.
- Watson, B. [1995]. “Taxonomies and toolkits of regular language algorithms”. Ph.D.
Company, Inc. Boston, MA, USA.
- Yamamoto, H. [2005]. “New finite automata corresponding to semiextended regular
expressions”. Systems and Computers in Japan. vol. 36, no. 10, pp. 54-61.
regular expression into its Glushkov automaton”. Laboratoire d'Informatique de Rouen. vol. 215,
no. 1-2, pp. 69-87.
Index Terms

Computer Science Algorithms

Key words

Alphabet

Automaton Construction

Combined State Union

Concatenation

Kleene Closure

Minimization

Transition