Call for Paper - January 2023 Edition
IJCA solicits original research papers for the January 2023 Edition. Last date of manuscript submission is December 20, 2022. Read More

Variational Iteration Method for Solving Two Dimensional Volterra - Fredholm Nonlinear Integral Equations

Print
PDF
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2016
Authors:
M. H. Saleh, D. Sh. Mohamed, R. A. Taher
10.5120/ijca2016911822

M H Saleh, Sh. D Mohamed and R A Taher. Variational Iteration Method for Solving Two Dimensional Volterra - Fredholm Nonlinear Integral Equations. International Journal of Computer Applications 152(3):29-33, October 2016. BibTeX

@article{10.5120/ijca2016911822,
	author = {M. H. Saleh and D. Sh. Mohamed and R. A. Taher},
	title = {Variational Iteration Method for Solving Two Dimensional Volterra - Fredholm Nonlinear Integral Equations},
	journal = {International Journal of Computer Applications},
	issue_date = {October 2016},
	volume = {152},
	number = {3},
	month = {Oct},
	year = {2016},
	issn = {0975-8887},
	pages = {29-33},
	numpages = {5},
	url = {http://www.ijcaonline.org/archives/volume152/number3/26302-2016911822},
	doi = {10.5120/ijca2016911822},
	publisher = {Foundation of Computer Science (FCS), NY, USA},
	address = {New York, USA}
}

Abstract

In this paper we investigate the numerical solution of two dimensional Volterra – Fredholm integralequations by Variational iteration method. Two numerical examples are given to illustrate themethod.

References

  1. Darania . p and Ebadian . A ; Numerical solutions of the nonlinear two dimensional Volterraintegral equations .Newzealand Journal of mathematics .vol36(2007), 163 − 174.
  2. Nemati .S and Ordokhanyi .Y ; Numerical solution of two dimensional nonlinear Volterraintegral equations by the Lagendre polynomials .J . SCI . Tarbiat Moalem University.vol11,No.2(2012), 195 − 210 .
  3. Saeedi . L , Tari . A and Masuleh . S . H . M ; Numerical solution of some nonlinearVolterra integral equations of the first kind .Applications and Applied Mathematics. vol8, (2013), 214 − 226
  4. Bazm .S and Lima .P ; Numerical solutions of the nonlinear second kind two dimensionalVolterra integral equations using Extrapolation method .Numerical Analysis and Applied Mathematics, International conference(2010), 1195 − 1198
  5. Gholami .A ;Solving system of two dimensional nonlinear Volterra -Fredholm integro -differential equations by hes Variational Iteration method .Researcher (2015), 81 − 85
  6. Erfanian .H .R and Mostahahsan .T ;Approximate solution of a class of nonlinear integralequations . The Journal of mathematics and computer science vol.3,No.3(2011), 278 − 286
  7. Bahzadi .Sh .S ;The use of Iterative methods to solve two dimensional nonlinear Volterra-Fredholm integro -differential equations .ISPACS , vol.(2012), 20pages
  8. Rabbani .M and Jamali .R ;solving nonlinear system of mixed Volterra -Fredholm integral equations by using Variational Iteration method . The Journal of mathematics and computerscience vol.5,No.4, (2012), 280 − 287
  9. Borzabadi .A .H and Hedari .M ; A successive iterative approach for two dimensional nonlinearVolterra -Fredholm integro -differential equations .Iranian Journal of Numerical Analysisand optimization .vol.4,No.1(2014), pp95 − 104
  10. Wazwaz . A ; Reliable Treatment for Mixed Volterra-Fredholm in Integral EquationsAppl.Math.comput.127(2002)405 − 414 .
  11. Biazar . J, Ghazvini . H ; He’s variational iteration method for solving linearand nonlinear systems of ordinary differential equations, Applied mathematics andcomputation,191(2007)287 − 297.
  12. Finlayson . B . A , The method of weighted residuals and variational principles , Academicpress, (1972) Newyork
  13. He . J . H ; A new approach to nonlinear partial differential equations, Communications inNonlinear science and Numerical simulation,V ol.2,No.4(1997)230 − 235.
  14. He . J . H ; Nonlinear oscillation with fractional derivative and it’s approximation, Int,conf.on vibration Engineering98,Dalian,China, (1998).
  15. He . J . H, Variational iteration method for nonlinear and it’s applications, Mechanics andpractice,20, (1)(1998)30 − 32(inchinese)
  16. He . J . H ; Variational Iteration method - a kind of nonlinear analytical technique:Someexamples, Int.Journal of Nonlinear Mechanics,34(1999)699 − 708.
  17. Inokuti . M ; General use of the Lagrange multiplier in in nonlinear mathematicalphysics,in: S. Nemat-nasser(Ed.), Variational Method in Mechanics of solids, Progamonpress, oxford, (1978)156 − 16210
  18. Xu. Lan ; Variational iteration method for solving integral equations, computers and Mathematicswith Applications,54(2007)1071 − 1078
  19. Abdollah Borhanifar. and Khadijeh Sadri, Numerical solution for systems of two dimensionalintegral equations by using Jacobi operational collocation method.Sohag J. Math. 1, No. 1,15-26 (2014).
  20. Tatari . M , Dehghan . M ; On the Convergence of He’s Variational Iteration Method, J.comput.Appl.Math,207(2007)121−128

Keywords

Variational iteration method ,Volterra-fredholm ,Lagrange multiplier ,Two dimensional equations.