Call for Paper - January 2022 Edition
IJCA solicits original research papers for the January 2022 Edition. Last date of manuscript submission is December 20, 2021. Read More

Friend Recommendation System for Online Social Networks

Print
PDF
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2016
Authors:
Dagadu M. Jadhavar, V. R. Chirchi
10.5120/ijca2016911963

Dagadu M Jadhavar and V R Chirchi. Friend Recommendation System for Online Social Networks. International Journal of Computer Applications 153(12):1-3, November 2016. BibTeX

@article{10.5120/ijca2016911963,
	author = {Dagadu M. Jadhavar and V. R. Chirchi},
	title = {Friend Recommendation System for Online Social Networks},
	journal = {International Journal of Computer Applications},
	issue_date = {November 2016},
	volume = {153},
	number = {12},
	month = {Nov},
	year = {2016},
	issn = {0975-8887},
	pages = {1-3},
	numpages = {3},
	url = {http://www.ijcaonline.org/archives/volume153/number12/26538-2016911963},
	doi = {10.5120/ijca2016911963},
	publisher = {Foundation of Computer Science (FCS), NY, USA},
	address = {New York, USA}
}

Abstract

The Already social networking services recommends friends list to requesting user that is based on their social graphs, but they cannot fulfill user need to user preferences on friend selection. In this paper, we represent Friend recommendation, as lifestyle based friend recommendation system for social networks. Collecting data from smartphone sensors and identifying lifestyle of user, if lifestyle having high score similarities then recommend friend to user. Here probability Distribution algorithm is used for extracting lifestyle of users learns from text mining. Also use the Activity recognition for classify the activity of user and propose a similarity metric to find the similarity of life styles between users, and after this one finding user’s impact in consideration of life styles with a friend-matching graph. User request is received then friend recommendation system gives response as similar lifestyle matching friends lists to user query. At last, Friend recommendation system uses the feedback modules to improve the recommendation accuracy. We have Friend recommendation system is to implemented on the Android-based smartphones, By using Friend recommendation system user can get best friend list for preferences of users in choosing friends.

References

  1. Zhibo Wang ,Student member, IEEE, Jilong Liao, Qing Cao, Member, IEEE, Hairong Qi, Senior Member ,IEEE , and Zhi Wang ,Member, IEEE” FriendBook:A Semantic Based Friend Recommendation System for Social Networks” EEE Transaction on mobile computing, VOL.14,No.3,MARCH 2015.
  2. Facebookstatistics. http://www.digitalbuzzblog.com/ facebook-statistics-stats-facts-2011/.
  3. L. Bian and H. Holtzman. Online friend recommendation through personality matching and collaborative filtering. Proc. of UBICOMM, pages 230-235, 2011.
  4. T. Huynh, M. Fritz and B. Schiel. Discovery of Activity Patterns using Topic Models. Proc. of Ubi Comp. 2008.
  5. K. Farrahi and D. Gatica-Perez. Probabilistic mining of socio-geographic routines from mobile phone data. Selected Topics in Signal Processing, IEEE Journal of, Vol. 4, No. 4, pp. 746-755, 2010.
  6. C. M. Bishop. Pattern recognition and machine learning. Springer New York, 2006.
  7. P. Desikan, N. Pathak, J. Srivastava, and V. Kumar. Incremental page rank computation on evolving graphs. Proc. of WWW, pages 1094-1095, 2005.
  8. J. Kwon and S. Kim. Friend recommendation method using physical and social context. International Journal of Computer Science and Network Security, 10(11):116-120, 2010.
  9. E. Miluzzo, N. D. Lane, S. B. Eisenman, and A. T. Campbell. Cenceme-Injecting Sensing Presence into Social Networking Applications. Proc. of EuroSSC, pages 1-28, October 2007.
  10. Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. Understanding Transportation Modes Based on GPS Data for Web Applications. ACM Transactions on the Web (TWEB), 4(1):1-36, 2010.
  11. J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson. EasyTracker: Automatic Transit Tracking, Mapping, and Arrival Time Prediction Using Smartphones. Proc. of SenSys, pages 68-81, 2011.

Keywords

Life style,Friend, Bag of Activity model, Social Networks, Similarity Metric.