Abstract

The Fibonacci polynomials and Lucas polynomials are famous for possessing wonderful and amazing properties and identities. Generalization of Fibonacci polynomial has been done using various approaches. One usually found in the literature that the generalization is done by varying the initial conditions. In this paper, Generalized Fibonacci polynomials are defined by \(W_n(X) = X W_{n-1}(X) + W_{n-2}(X) \); \(n \geq 2 \) with \(W_0(X) = 2b \) and \(W_1(X) = a + b \), where \(a \) and \(b \) are integers. Further, some basic identities are generated and
derived by generating function.

References

1. Basin, S. L., The appearance of Fibonacci numbers and the Q Matrix in Electrical

2. Bicknell, Marjorie. A Primer for the Fibonacci Number: part and 7th – An introduction to
Fibonacci polynomials their Divisibility properties, The Fibonacci Quarterly, Vol. 8, No.4 (1970),
407-420.

3. Doman, B. G. S. and Williams, J. K., Fibonacci and Lucas Polynomials, Mathematical

6. Hoggatt, V. E. Jr., Private communication of Nov. 17, 1965 to Selmo Tauber , The

11. Singh B., Bhatnagar S., Sikhwal O., Fibonacci-Like Polynomials and Identities,

12. Singh M., Sikhwal O., and Gupta Y., Generalized Fibonacci-Lucas Polynomials,

Index Terms

Computer Science

Applied Mathematics

Keywords

Fibonacci polynomial, Lucas polynomial, Generalized Fibonacci polynomial, Generating function