Call for Paper - January 2023 Edition
IJCA solicits original research papers for the January 2023 Edition. Last date of manuscript submission is December 20, 2022. Read More

Some Characterizations on Soft Uni-groups and Normal Soft Uni-groups

Print
PDF
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2016
Authors:
Emrah Mustuoglu, Aslihan Sezgin, Zeynep Kaya Turk
10.5120/ijca2016912412

Emrah Mustuoglu, Aslihan Sezgin and Zeynep Kaya Turk. Some Characterizations on Soft Uni-groups and Normal Soft Uni-groups. International Journal of Computer Applications 155(10):1-8, December 2016. BibTeX

@article{10.5120/ijca2016912412,
	author = {Emrah Mustuoglu and Aslihan Sezgin and Zeynep Kaya Turk},
	title = {Some Characterizations on Soft Uni-groups and Normal Soft Uni-groups},
	journal = {International Journal of Computer Applications},
	issue_date = {December 2016},
	volume = {155},
	number = {10},
	month = {Dec},
	year = {2016},
	issn = {0975-8887},
	pages = {1-8},
	numpages = {8},
	url = {http://www.ijcaonline.org/archives/volume155/number10/26638-2016912412},
	doi = {10.5120/ijca2016912412},
	publisher = {Foundation of Computer Science (FCS), NY, USA},
	address = {New York, USA}
}

Abstract

In this paper, we first give the definition of soft uni-product and characterize soft uni-groups as regards this definition and we prove a number of results and give some alternative formulations about soft uni-groups by using the the concepts of normal soft uni-subgroups, characteristic soft uni-groups, conjugate soft uni-groups, soft normalizer and commutator of a group, which are analogs of significant results in group theory.

References

  1. L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.
  2. L.A. Zadeh, Toward a generalized theory of uncertainty (GTU)-an outline, Inform. Sci. 172 (2005) 1-40.
  3. Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci. 11 (1982) 341-356.
  4. Z. Pawlak, A. Skowron, Rudiments of rough sets, Inform. Sci. 177 (2007) 3-27.
  5. W.L. Gau, D. J. Buehrer, Vague sets, IEEE Tran. Syst. Man Cybern. 23 (2) (1993) 610-614.
  6. M.B. Gorzalzany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Set Syst. 21 (1987) 1-17.
  7. K. Atanassov, Operators over interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst. (64) (1994) 159-174.
  8. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. (20) (1986) 87-96.
  9. L. Zhou, W.Z. Wu, On generalized intuitionistic fuzzy rough approximation opeartors, Inform. Sci. 178 (11) (2008) 2448- 2465.
  10. D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19-31.
  11. P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562.
  12. M.I. Ali, F. Feng, X. Liu,W.K. Min, On some new operations in soft set theory, Comput. Math. Appl. 57 (9) (2009) 1547- 1553.
  13. N. C¸ a˜gman and S. Engino?glu, Soft set theory and uni-int decision making, Eur. J. Oper. Res. 207 (2010) 848-855.
  14. F. Feng, W. Pedrycz, On scalar products and decomposition theorems of fuzzy soft sets, Journal of Multi-valued Logic and Soft Computing, 2015, 25(1), 45-80.
  15. F. Feng, J. Cho, W. Pedrycz, H. Fujita, T. Herawan, Soft set based association rule mining, Knowledge-Based Systems, 2016, 111, 268-282.
  16. X. Ma, J. Zhan, Applications of soft intersection set theory to h-hemiregular and h-semisimple hemirings, J. of Mult.- Valued Logic and Soft Computing, 25(2015) 105124
  17. J. Zhan, B. Yu, V. Fotea, Characterizations of two kinds of hemirings based on probability spaces, Soft Comput, 20(2016), 637648.
  18. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
  19. W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Set Syst., 8 (1982) 133-139.
  20. W. N. Dixit, R. Kumar and N. Ajmal, On fuzzy rings, Fuzzy Set Syst., 49 (1992) 205-213.
  21. H.K. Saikia, L.K. Barthakur, On fuzzy N-subgroups of fuzzy ideals of near-rings and near-ring groups, J. Fuzzy Math. 11 (2003) 567-580.
  22. K.H. Kim, Y.B. Jun, On fuzzy ideals of near-rings, Bull. Korean Math. Soc. 33 (1996) 593-601.
  23. S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Set Syst., 44 (1991) 139-146.
  24. B. Davvaz, Fuzzy ideals of near-rings with interval-valued membership functions, J. Sci. I. Iran. 12 (2001) 171-175.
  25. N. C¸ a?gman, F. C¸ itak and H. Aktas¸, Soft int-groups and its applications to group theory, Neural Comput. Appl., DOI: 10.1007/s00521-011-0752-x.
  26. K. Kaygisiz, On soft int-groups, Annals of Fuzzy Mathematics and Informatics, Volume 4, No. 2, (October 2012), 365- 375
  27. E. Mus¸tuo?glu, A. Sezgin, Z. K. T¨urk, N. C¸ a?gman, A.O. Atag¨un, Soft uni-group and its applications to group theory, submitted.
  28. A. Sezgin, A new approach to semigoup theory I; Soft union semigroup, ideals and bi-ideals , Algebra Letters, Vol 2016 (2016), Article ID 3.
  29. A. Sezgin Sezer, A new view to ring theory via soft union rings, ideals and bi-ideals, Knowledge-Based Systems, 36, 2012, December, 300-314.

Keywords

Soft sets, soft uni-groups, soft uni-product, normal soft unisubgroups, characteristic soft uni-groups, conjugate soft unigroups, soft normalizer of a soft set.