![]() |
10.5120/ijca2016912412 |
Emrah Mustuoglu, Aslihan Sezgin and Zeynep Kaya Turk. Some Characterizations on Soft Uni-groups and Normal Soft Uni-groups. International Journal of Computer Applications 155(10):1-8, December 2016. BibTeX
@article{10.5120/ijca2016912412, author = {Emrah Mustuoglu and Aslihan Sezgin and Zeynep Kaya Turk}, title = {Some Characterizations on Soft Uni-groups and Normal Soft Uni-groups}, journal = {International Journal of Computer Applications}, issue_date = {December 2016}, volume = {155}, number = {10}, month = {Dec}, year = {2016}, issn = {0975-8887}, pages = {1-8}, numpages = {8}, url = {http://www.ijcaonline.org/archives/volume155/number10/26638-2016912412}, doi = {10.5120/ijca2016912412}, publisher = {Foundation of Computer Science (FCS), NY, USA}, address = {New York, USA} }
Abstract
In this paper, we first give the definition of soft uni-product and characterize soft uni-groups as regards this definition and we prove a number of results and give some alternative formulations about soft uni-groups by using the the concepts of normal soft uni-subgroups, characteristic soft uni-groups, conjugate soft uni-groups, soft normalizer and commutator of a group, which are analogs of significant results in group theory.
References
- L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338-353.
- L.A. Zadeh, Toward a generalized theory of uncertainty (GTU)-an outline, Inform. Sci. 172 (2005) 1-40.
- Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci. 11 (1982) 341-356.
- Z. Pawlak, A. Skowron, Rudiments of rough sets, Inform. Sci. 177 (2007) 3-27.
- W.L. Gau, D. J. Buehrer, Vague sets, IEEE Tran. Syst. Man Cybern. 23 (2) (1993) 610-614.
- M.B. Gorzalzany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Set Syst. 21 (1987) 1-17.
- K. Atanassov, Operators over interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst. (64) (1994) 159-174.
- K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. (20) (1986) 87-96.
- L. Zhou, W.Z. Wu, On generalized intuitionistic fuzzy rough approximation opeartors, Inform. Sci. 178 (11) (2008) 2448- 2465.
- D. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19-31.
- P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562.
- M.I. Ali, F. Feng, X. Liu,W.K. Min, On some new operations in soft set theory, Comput. Math. Appl. 57 (9) (2009) 1547- 1553.
- N. C¸ a˜gman and S. Engino?glu, Soft set theory and uni-int decision making, Eur. J. Oper. Res. 207 (2010) 848-855.
- F. Feng, W. Pedrycz, On scalar products and decomposition theorems of fuzzy soft sets, Journal of Multi-valued Logic and Soft Computing, 2015, 25(1), 45-80.
- F. Feng, J. Cho, W. Pedrycz, H. Fujita, T. Herawan, Soft set based association rule mining, Knowledge-Based Systems, 2016, 111, 268-282.
- X. Ma, J. Zhan, Applications of soft intersection set theory to h-hemiregular and h-semisimple hemirings, J. of Mult.- Valued Logic and Soft Computing, 25(2015) 105124
- J. Zhan, B. Yu, V. Fotea, Characterizations of two kinds of hemirings based on probability spaces, Soft Comput, 20(2016), 637648.
- A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
- W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Set Syst., 8 (1982) 133-139.
- W. N. Dixit, R. Kumar and N. Ajmal, On fuzzy rings, Fuzzy Set Syst., 49 (1992) 205-213.
- H.K. Saikia, L.K. Barthakur, On fuzzy N-subgroups of fuzzy ideals of near-rings and near-ring groups, J. Fuzzy Math. 11 (2003) 567-580.
- K.H. Kim, Y.B. Jun, On fuzzy ideals of near-rings, Bull. Korean Math. Soc. 33 (1996) 593-601.
- S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Set Syst., 44 (1991) 139-146.
- B. Davvaz, Fuzzy ideals of near-rings with interval-valued membership functions, J. Sci. I. Iran. 12 (2001) 171-175.
- N. C¸ a?gman, F. C¸ itak and H. Aktas¸, Soft int-groups and its applications to group theory, Neural Comput. Appl., DOI: 10.1007/s00521-011-0752-x.
- K. Kaygisiz, On soft int-groups, Annals of Fuzzy Mathematics and Informatics, Volume 4, No. 2, (October 2012), 365- 375
- E. Mus¸tuo?glu, A. Sezgin, Z. K. T¨urk, N. C¸ a?gman, A.O. Atag¨un, Soft uni-group and its applications to group theory, submitted.
- A. Sezgin, A new approach to semigoup theory I; Soft union semigroup, ideals and bi-ideals , Algebra Letters, Vol 2016 (2016), Article ID 3.
- A. Sezgin Sezer, A new view to ring theory via soft union rings, ideals and bi-ideals, Knowledge-Based Systems, 36, 2012, December, 300-314.
Keywords
Soft sets, soft uni-groups, soft uni-product, normal soft unisubgroups, characteristic soft uni-groups, conjugate soft unigroups, soft normalizer of a soft set.