Abstract

Mobile agents are becoming pre-eminent by not only outperforming in comparison with the conventional techniques such as RMI, RPC etc. but also by surpassing their loopholes. They promise to solve many major issues of high network bandwidth consumption during communication, bottleneck problem of centralized system, even can act as intrusion detection agents, and may also be used as monitoring of various nodes in multifarious domains like e-commerce services, for load balancing in cluster, health care monitoring systems, air traffic control systems, and many more. In this paper, the agent server required to allow mobile agents on any machine in network are compared for homogenous and heterogeneous nodes. The homogeneity and heterogeneity of nodes is defined at the hardware level and type of OS installation. Basically, a mobile agent is moving the code to data rather data to code. Agent and agent server are two different parts, in which agent is a computational, operational and communicative entity while the agent server takes care of fundamentals execution and security features. To all intents and purposes, these agent servers help mobile agents to interact and engage with the underlying system acting as an execution environment for them. Agent servers,
also called as agency or agent runtime environment, may differ for different platforms and this
contrast lies in the software architectural components which they contribute being a middle layer
in between the mobile agents and system platform. This paper focuses on architectural
dissimilitude between agencies of heterogeneous and homogeneous distributed systems.

References

1. Youssef M. Essa, Gamal Attiya, and Ayman El-Sayed. "Mobile agent based new
framework for improving big data analysis." In Cloud Computing and Big Data
(CloudCom-Asia), 2013 International Conference on, pp. 381-386. DOI:
10.1109/CLOUDCOM-ASIA.2013.75, IEEE, 2013.
2. Gaoyun Chen, Jun Lu, Jian Huang, and Zexu Wu. “Saaas-the mobile agent based service
for cloud computing in internet environment.” In 2010 Sixth International Conference on Natural
Nanjing University, China, 2002.
4. Anne Nguyen, Ian Stewart, Xinfeng Yang, “A mobile Agent: Applications for
E-Commerce”, AusWeb01, the Seventh Australian World Wide Web Conference, 21st-25th
April, Opal Cove Resort, Coogs Harbour, NSW.© 2000.
5. Tina Setter, Andrea Gasparri, and Magnus Egerstedt. “Trust-based interactions in teams of
mobile agents.” In 2016 American Control Conference (ACC), pp. 6158-6163. DOI:
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 33.3 (2003):
350-357.
7. Schoembl, Marthe, and Elsabe Cloet. “Architectural components for the efficient design
of mobile agent systems.” Proceedings of the 2003 annual research conference of the South
African institute of computer scientists and information technologists on Enablement through
technology. South African Institute for Computer Scientists and Information Technologists,
2003.
8. Lange, Danny B., Mitsuru Oshima, Günter Karjoth, and Kazuya Kosaka. "Aglets:
253-266. Springer Berlin Heidelberg, 1997.Robert Gray, David Kotz, Saurab Nog, Daniela Rus,
George Cybenko, “Mobile Agents: The Next Generation in Distributed Computing”, Deptt. Of
CSE, Dartmouth College, 1997, IEEE.
issues—Solutions." In Information Communication and Embedded Systems (ICICES), 2014
166-171. DOI: 10.12691/jcsa-3-6-11.
11. Pandey, Mr Rajesh, Mr Nidheesh Sharma, and Mr Ramratan Rathore. “Aglets (A Java
Technology in Computer Science (IJECCIS){2.4 (2013).
agents: The next generation in distributed computing.” In Parallel Algorithms/Architecture

Index Terms

Computer Science

Distributed Systems

Keywords

component; mobile agents; software architecture; distributed systems; agent migration; marshling; agent transfer protocol