Abstract

Image segmentation plays important role in the biomedical images. The process of image segmentation is defined as the technique via which a given photograph is segmented into several parts in order to further analyze every of these components present in the photo [9]. In segmentation, without a doubt image is represented into greater understandable form. Segmentation essentially used to hit upon the gadgets, obstacles and other applicable facts in the digital snap shots. There are exceptional tactics to enforce segmentation like threshold, clustering and remodel strategies etc. [10]. The reason for the popularity of image segmentation is because of its importance in the area of image processing. The prime task of the researchers working in this field is to develop a method for efficient and better image segmentation. There are certain factors that affect the process of image segmentation like the intensity of image to be segmented, color, type and the noise present in the image [12]. No algorithm has been developed till date that could keep a look at all the above listed factors and then segment the image effectively so that all the problems that can come in the way of image segmentation can be avoided. The algorithm development for effective image segmentation is still a big research
that will take place in the area of image processing. In this paper a new technique is proposed. This technique is capable of covering the lacking points of traditional techniques or algorithms. In this work DSIHE is implemented along with fuzzy C-Mean segmentation technique in order to enhance the quality and performance of the technique.

References

22. Sharon Alpert. Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration.

Index Terms

| Computer Science | Image Processing |

Keywords

Segmentation; Enhancement; Normalization Euclidean Distance; Signal to Noise Ratio; C-Mean Segmentation.