CFP last date
20 August 2024
Call for Paper
September Edition
IJCA solicits high quality original research papers for the upcoming September edition of the journal. The last date of research paper submission is 20 August 2024

Submit your paper
Know more
Reseach Article

A Simplified Equivalent Circuit Model of MEMS Electrostatic Actuator

by Pradeep Chawda
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 160 - Number 9
Year of Publication: 2017
Authors: Pradeep Chawda
10.5120/ijca2017913097

Pradeep Chawda . A Simplified Equivalent Circuit Model of MEMS Electrostatic Actuator. International Journal of Computer Applications. 160, 9 ( Feb 2017), 17-23. DOI=10.5120/ijca2017913097

@article{ 10.5120/ijca2017913097,
author = { Pradeep Chawda },
title = { A Simplified Equivalent Circuit Model of MEMS Electrostatic Actuator },
journal = { International Journal of Computer Applications },
issue_date = { Feb 2017 },
volume = { 160 },
number = { 9 },
month = { Feb },
year = { 2017 },
issn = { 0975-8887 },
pages = { 17-23 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume160/number9/27101-2017913097/ },
doi = { 10.5120/ijca2017913097 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:06:15.325113+05:30
%A Pradeep Chawda
%T A Simplified Equivalent Circuit Model of MEMS Electrostatic Actuator
%J International Journal of Computer Applications
%@ 0975-8887
%V 160
%N 9
%P 17-23
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Modeling a MEMS (Micro Electro-Mechanical Systems) electrostatic actuator in electrical domain is important for system simulation of the actuator along with its associated electronics. For instance, an integrated MEMS resonator used in a serial I/O PLL design modeled in electrical domain enables to optimize the system with the rest of the electronics. In this work, we have developed a simplified equivalent circuit model for MEMS electrostatic actuator and simulated it using Natspice, a U.C. Berkeley SPICE3f5-based in-house circuit simulator. The equations governing the actuator are implemented using coupled RL and RLC circuit, defined in SPICE and Verilog-A. Natspice simulation results are presented and compared with Matlab results which show very high correlation. A system consisting of an array of MEMS devices can be quickly simulated using this simplified model.

References
  1. Schröpfer, Gerold, et al. "Advanced process emulation and circuit simulation for co-design of MEMS and CMOS devices." Proceedings Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP). 2005.
  2. Cheng, J., Zhe, J., Wu, X., Farmer, K. R., Modi, V., & Frechette, L. (2002, May). Analytical and FEM simulation pull-in study on deformable electrostatic micro actuators. In Technical Proc. of the International Conf on Modeling and Simulation of Microsystems, MSM (pp. 298-301).
  3. Wang, C. K., Chen, C. S., & Wen, K. A. (2011, May). A monolithic CMOS MEMS accelerometer with chopper correlated double sampling readout circuit. In Circuits and Systems (ISCAS), 2011 IEEE international Symposium on (pp. 2023-2026). IEEE.
  4. Senturia, S. D. (1998). CAD challenges for microsensors, microactuators, and microsystems. Proceedings of the IEEE, 86(8), 1611-1626.
  5. Cheng, J., Zhe, J., Wu, X., Farmer, K. R., Modi, V., & Frechette, L. (2002, May). Analytical and FEM simulation pull-in study on deformable electrostatic micro actuators. In Technical Proc. of the International Conf on Modeling and Simulation of Microsystems, MSM (pp. 298-301).
  6. Camon, H., Larnaudie, F., Rivoirard, F., & Jammes, B. (1999, May). Analytical simulation of a 1D single crystal silicon electrostatic micromirror. In International Conference on Modeling and Simulation of Microsystems (pp. 628-631).
  7. Certon, D., Teston, F., & Patat, F. (2005). A finite difference model for cMUT devices. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 52(12), 2199-2210.
  8. Clark, J. V., Zhou, N., & Pister, K. S. J. (1998, June). MEMS simulation using SUGAR v0. 5. In Solid-State Sensor and Actuator Workshop (pp. 191-196).
  9. Lohfink, A., Eccardt, P. C., Benecke, W., & Meixner, H. (2003, October). Derivation of a 1D CMUT model from FEM results for linear and nonlinear equivalent circuit simulation. In Ultrasonics, 2003 IEEE Symposium on (Vol. 1, pp. 465-468). IEEE.
  10. Lohfink, A., & Eccardt, P. C. (2005). Linear and nonlinear equivalent circuit modeling of CMUTs. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 52(12), 2163-2172.
  11. Wygant, I. O., Kupnik, M., & Khuri-Yakub, B. T. (2008, November). Analytically calculating membrane displacement and the equivalent circuit model of a circular CMUT cell. In Ultrasonics Symposium, 2008. IUS 2008. IEEE (pp. 2111-2114). IEEE.
  12. Mita, M., & Toshiyoshi, H. (2009). An equivalent-circuit model for MEMS electrostatic actuator using open-source software Qucs. IEICE Electronics Express, 6(5), 256-263.
  13. Sathe, A. A., Groll, E. A., & Garimella, S. V. (2008). Analytical model for an electrostatically actuated miniature diaphragm compressor. Journal of micromechanics and microengineering, 18(3), 035010.
  14. Cicek, İ., Bozkurt, A., & Karaman, M. (2005). Design of a front-end integrated circuit for 3D acoustic imaging using 2D CMUT arrays. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 52(12), 2235-2241.
  15. Konishi, T., Machida, K., Masu, K., & Toshiyoshi, H. (2013). Multi-Physics Equivalent Circuit Model for MEMS Sensors and Actuators. ECS Transactions, 50(14), 55-61.
  16. Koymen, H., Atalar, A., Aydogdu, E., Kocabas, C., Oguz, H. K., Olcum, S., ... & Unlugedik, A. (2012). An improved lumped element nonlinear circuit model for a circular CMUT cell. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 59(8).
  17. Wygant, I. O., Kupnik, M., & Khuri-Yakub, B. T. (2016, September). CMUT design equations for optimizing noise figure and source pressure. In Ultrasonics Symposium (IUS), 2016 IEEE International (pp. 1-4). IEEE.
  18. Oguz, H. K., Atalar, A., & Köymen, H. (2013). Equivalent circuit-based analysis of CMUT cell dynamics in arrays. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 60(5), 1016-1024.
  19. Oguz, H. K., Atalar, A., & Köymen, H. (2013). Equivalent circuit-based analysis of CMUT cell dynamics in arrays. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 60(5), 1016-1024.
  20. Savoia, A. S., Caliano, G., & Pappalardo, M. (2012). A CMUT probe for medical ultrasonography: from microfabrication to system integration. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 59(6), 1127-1138.
  21. Song, J., Jung, S., Kim, Y., Cho, K., Kim, B., Lee, S. & Kim, D. (2012, February). Reconfigurable 2D cMUT-ASIC arrays for 3D ultrasound image. In SPIE Medical Imaging (pp. 83201A-83201A). International Society for Optics and Photonics.
  22. Gurun, G., Tekes, C., Zahorian, J., Xu, T., Satir, S., Karaman, M., ... & Degertekin, F. L. (2014). Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 61(2), 239-250.
  23. Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.
  24. Hung, E. S., & Senturia, S. D. (1999). Extending the travel range of analog-tuned electrostatic actuators. Journal of microelectromechanical systems, 8(4), 497-505.
  25. Seeger, J. I., & Boser, B. E. (2003). Charge control of parallel-plate, electrostatic actuators and the tip-in instability. Journal of Microelectromechanical systems, 12(5), 656-671.
Index Terms

Computer Science
Information Sciences

Keywords

Microactuator Equivalent Circuit Large Signal Small Signal