CFP last date
22 July 2024
Reseach Article

Optimal Policy for Non-Instantaneous Decaying Inventory Model with Learning Effect and Partial Shortages

by Anchal Agarwal, Isha Sangal, S. R. Singh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 161 - Number 10
Year of Publication: 2017
Authors: Anchal Agarwal, Isha Sangal, S. R. Singh
10.5120/ijca2017913318

Anchal Agarwal, Isha Sangal, S. R. Singh . Optimal Policy for Non-Instantaneous Decaying Inventory Model with Learning Effect and Partial Shortages. International Journal of Computer Applications. 161, 10 ( Mar 2017), 13-18. DOI=10.5120/ijca2017913318

@article{ 10.5120/ijca2017913318,
author = { Anchal Agarwal, Isha Sangal, S. R. Singh },
title = { Optimal Policy for Non-Instantaneous Decaying Inventory Model with Learning Effect and Partial Shortages },
journal = { International Journal of Computer Applications },
issue_date = { Mar 2017 },
volume = { 161 },
number = { 10 },
month = { Mar },
year = { 2017 },
issn = { 0975-8887 },
pages = { 13-18 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume161/number10/27183-2017913318/ },
doi = { 10.5120/ijca2017913318 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:07:04.675953+05:30
%A Anchal Agarwal
%A Isha Sangal
%A S. R. Singh
%T Optimal Policy for Non-Instantaneous Decaying Inventory Model with Learning Effect and Partial Shortages
%J International Journal of Computer Applications
%@ 0975-8887
%V 161
%N 10
%P 13-18
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Deterioration of goods and learning is a realistic phenomenon in daily life. Therefore maintaining the stock of decaying items becomes an important factor for decision makers. In this study deterioration rate follows the Weibull distribution and holding cost is gradually decreases, therefore learning effect is incorporated on holding cost. Many researchers generally assumed that the shortages are either completely backlogged or lost. But in this paper shortage is allowed and partial backlogged. The backlogging rate is taken as exponential function of time. Numerical examples are provided to further illustrate the model. Sensitivity analysis has been carried out to analyze the impact of change in various parameters. The aim of this model is to minimize the total cost.

References
  1. Adler, G. L., & Nanda, R. (1974). The effects of learning on optimal lot size determination—single product case. AIIE Transactions, 6(1), 14-20.
  2. Agarwal, A., & Singh, S. R. (2013 ). An EOQ inventory model for two parameter Weibull deterioration with time dependent demand and shortages.  International Journal of Engineering Research and Technology, 2(7).
  3. Anchal, A., Isha, S., & Smita, R. (2016). A partial backlogging inventory model for non-instantaneous decaying items under trade credit financing facility. Indian Journal of Science and Technology, 9(34).
  4. Balkhi, Z. T. (2003). The effects of learning on the optimal production lot size for deteriorating and partially backordered items with time varying demand and deterioration rates. Applied Mathematical Modelling, 27(10), 763-779.
  5. Chang, H. J., & Dye, C. Y. (1999). An EOQ model for deteriorating items with time varying demand and partial backlogging. Journal of the Operational Research Society, 50(11), 1176-1182.
  6. Chern, M. S., Yang, H. L., Teng, J. T., & Papachristos, S. (2008). Partial backlogging inventory lot-size models for deteriorating items with fluctuating demand under inflation. European Journal of Operational Research, 191(1), 127-141.
  7. Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE transactions, 5(4), 323-326.
  8. Dye, C. Y. (2013). The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega, 41(5), 872-880.
  9. Fisk, J. C., & Ballou, D. P. (1982). Production lot sizing under a learning effect. IIE Transactions, 14(4), 257-264.
  10. Ghare, P. M., & Schrader, G. F. (1963). A model for exponentially decaying inventory. Journal of industrial Engineering, 14(5), 238-243.
  11. Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of operational research, 134(1), 1-16.
  12. Hariga, M. (1996). Optimal EOQ models for deteriorating items with time-varying demand. Journal of the Operational Research Society, 47(10), 1228-1246.
  13. Jaber, M. Y., Goyal, S. K., & Imran, M. (2008). Economic production quantity model for items with imperfect quality subject to learning effects. International Journal of Production Economics, 115(1), 143-150.
  14. Jaggi, C. (2014). An optimal replenishment policy for non instantaneous deteriorating items with price dependent demand and time-varying holding cost. International Scientific Journal on Science Engineering & Technology,  17(03).
  15. Jordan, R.B.(1958), ‘Learning how to use the learning curve’, N.A.A. Bull, 39 (5), 27–39.
  16. Khanra, S., Mandal, B., & Sarkar, B. (2013). An inventory model with time dependent demand and shortages under trade credit policy. Economic Modelling, 35, 349-355.
  17. Kumar, N., Singh, S. R., & Kumari, R. (2013). Learning effect on an inventory model with two-level storage and partial backlogging under inflation. International Journal of Services and Operations Management, 16(1), 105-122.
  18. Mishra, S., Raju, L. K., Misra, U. K., & Misra, G. (2011). An inventory model for deteriorating items with on-hand inventory dependent, variable type demand rate. International Journal of Mathematics & Computation™, 12(S11), 39-44
  19. Nahmias, S. (1982). Perishable inventory theory: A review. Operations research, 30(4), 680-708.
  20. Raafat, F. (1991). Survey of literature on continuously deteriorating inventory models. Journal of the Operational Research society, 42(1), 27-37.
  21. Sana, S. S. (2010). Optimal selling price and lot size with time varying deterioration and partial backlogging. Applied Mathematics and Computation, 217(1), 185-194.
  22. Sangal, I., Agarwal, A., & Rani, S. (2016). A fuzzy environment inventory model with partial backlogging under learning effect. TC, 14, 1.
  23. Sarkar, B., & Moon, I. (2014). Improved quality, setup cost reduction, and variable backorder costs in an imperfect production process. International journal of production economics, 155, 204-213.
  24. Shukla, H., Shukla, V., & Yadava, S. (2013). EOQ model for deteriorating items with exponential demand rate and shortages. Uncertain Supply Chain Management, 1(2), 67-76.
  25. Singh, S., Jain, S., & Pareek, S. (2013). An imperfect quality items with learning and inflation under two limited storage capacity. International Journal of Industrial Engineering Computations, 4(4), 479-490.
  26. Tayal, S., Singh, S., & Sharma, R. (2015). An inventory model for deteriorating items with seasonal products and an option of an alternative market. Uncertain Supply Chain Management, 3(1), 69-86.
  27. Widyadana, G. A., Cárdenas-Barrón, L. E., & Wee, H. M. (2011). Economic order quantity model for deteriorating items with planned backorder level. Mathematical and Computer Modelling, 54(5), 1569-1575
  28. Wright, T. (1936). Factors affecting the cost of airplanes. Journal of Aeronautical Science, 3( 4), 122–128.
  29. Wu, K. S., Ouyang, L. Y., & Yang, C. T. (2006). An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics, 101(2), 369-384.
  30. Yadav, D., Singh, S. R., & Kumari, R. (2013). Inventory model with learning effect and imprecise market demand under screening error. Opsearch, 50(3), 418-432.
  31. Yelle, L. E. (1979). The learning curve: Historical review and comprehensive survey. Decision sciences, 10(2), 302-328.
Index Terms

Computer Science
Information Sciences

Keywords

Inventory Non-instantaneous deterioration Time dependent demand rate Learning Partial backlogging