Abstract

This work proposes the development of software that has the objective of simulating the drying of cerrado fruits. The project was constructed through bibliographical surveys that pointed out several mathematical models that represent phenomena of heat and mass transfer between product and drying air. The developed program is dynamic and based on the Thompson model, but allows the use of the Page model, as well as the open parameterization of some equations such as the conversion reason, specific heat, among others. The software developed allows the simulation of heat transfer process, minimizing time and costs applied in practical experiments preliminary.

References

1. MARCINKOWSKI, A. E.: Study of drying kinetics, sorption curves and prediction of thermodynamic properties of textured soybean protein. (Dissertation presented to Chemistry
Engineering program of Federal University of Rio Grande do Sul) 2006.
2. THOMPSON, T. L.; PEART, R. M.; FOSTER, G. H. Mathematical simulation of corn
drying – A new model. Transaction of the ASAE, Saint Joseph, Michigan, v. 11, n. 4, p. 582-
586, 1968.
3. GOL, N.B.; CHAUDHARI, M.L.; RAO, T.V.R. Effect of edible coatings on quality and shelf
life of carambola (Averrhoa carambola L.) fruit during storage. Journal of Food Science and
Technology. v.52. issue 1. pp.78-91. 2015.
4. QUEIROZ, D.M.; SILVA, J.S.; MELO, E.C. Drying simulation practice on programmable
5. OLIVEIRA, R. J.: Development of a Thin-Grain Fine Drying System: Coparization Among
Simulation Mathematical Models for Bean-Macácar Grains. (Dissertation presented to Federal
University of Campina Grande) 2006.
6. SIUCINSKA, K. KONOPACKA, D.; MIESZCZAKOWSKA-FRAC, M.; POLUBOK, A. The
effects of ultrasound on quality and nutritional aspects of dried sour cherries during shelf-life.
7. JUNIOR, L.C.C; NARDINI, V.; KHATIWADA, B.P.; TEIXIERA, G.H.A.; WALSH, K.B.
Classification of intact açaí (Euterpe pleracea Mart.) and juçara (Euterpe edulis Mart) fruits
based on dry matter contente by means of near infrared spectroscopu. Food Control. v.50.
pp.630-636. 2015.
8. BEJAUOI, M.A.; BELTRAN, G.; AGUILERA, M.P.; JIMENEZ, A. Continuous conditioning
of olive paste by high power ultrasounds: response surfasse methodology to predict
temperature and its effect on oil yield and virgin olive oil characteristics. LWT – Food Science
9. CHAUHAN, P.S.; KUMAR, A.; TEKASAKUL, P. Applications of software in solar drying
10. BAILLY, R.:Desenvolvimento de um Protótipo de Secador Infravermelho e de uma
Ferramenta Computacional Para Auxiliar as Empresas de Beneficiamento de Grãos na
Obtenção de Curvas de Secagem. Julho de 2014. 86. Dissertação de Mestrado - Universidade
11. RUNGPICHAYAPICHET, P.; MAHAYOTHEE, B.; NAGLE, M.; KHUWIJITJARU, P.;
MULLER, J. Robust NIRS models for non-destructive prediction of postharvest fruit ripeness
and quality in mango. Postharvest Biology and Technology. v.111, pp.31-40. 2015.
12. NARCISO, P. J. Valorization of cerrado fruits: Development of pequi powder seasoning.
(Dissertation presented to Federal University of Grande Dourados) 2012.
13. COLTRI, P.P.; JUNIOR, J.Z.; DUBREUIL, V.; RAMIREZ, G.M.; PINTO, H.S.; CORAL,
G.; LAZARIM, C.G. Empiracal models to predict LAI and aboverground biomass of coffee
arábica under full sun and shaded plantation: a case study of south of Minas Gerais, Brasil.
Agroforestry Systems. v.89, issue 4, pp.621-636. 2015.
14. DANTAS, L. A.: Development of a Dynamic Computational Program for Simulation of
Drying of Grains and Seeds. (Dissertation presented to Agricultural Engineering program of
15. RUBIO-CELORIO, M.; GARCIA-GIL, N.; GOU, P.; ARNAU, J.; FULLADOSA, E. Effect
of temperature, high pressure and freezing/thawing of dry-cured ham slices on dielectric time
16. CAVALCANTI MATA, M.E.R.M. Simulation of BR-451 white maize drying in stationary

Index Terms

Computer Science
Software Engineering

Keywords

Simulator, Modeling, Transport phenomenon. Fruits