Abstract

Scene analysis is a prior stage in many computer vision and robotics applications. Thanks to recent depth camera, we propose a fast plane segmentation approach for obstacle detection in indoor environments. The proposed method Fast RANdom Sample Consensus (FRANSAC) involves three steps: data input, data preprocessing and 3D RANSAC. Firstly, range data, obtained from 3D camera, is converted into 3D point clouds. Next, a preprocessing stage is introduced where a pass through and voxel grid filters are applied. Finally, planes are estimated using a modified 3D RANSAC. The experimental results demonstrate that our approach can segment planes and detect obstacles about 7 times faster than the standard RANSAC without losing the discriminative power.

References

23. J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the
evaluation of RGB-D SLAM systems,” in IEEE International Conference on Intelligent Robots

Index Terms

Computer Science
Artificial Intelligence

Keywords

RANSAC, point cloud, plane segmentation, Kinect, RGB-D, Voxel