Abstract

In this paper, we compare the performance of three traditional robust classifiers (Neural Networks, Support Vector Machines, and Decision Trees) with and without utilizing multi-objective genetic programming in the feature extraction phase. This work argues that effective feature extraction can significantly enhance the performance of these classifiers. We have applied these three classifiers stand alone to real world five datasets from the UCI machine learning database and also to network intrusion “KDD-99 cup” dataset. Then, the experiments were repeated by adding the feature extraction phase. The results of the two approaches are compared and conclude that the effective method is to evolve optimal feature extractors that transform input pattern space into a decision space in which the performance of traditional robust classifiers can be enhanced.

References

1. Y Zhang and P I Rockett “Domain-Independent Approaches to Optimise Feature
Extraction for MultiClassification using Multi-Objective Genetic Programming” Technical Report
No. VIE 2007/001 Department of Electronic and Electrical Engineering University of Sheffield
2. Y. Liu, F. Tang, and Z. Zeng, “Feature selection based on dependency margin,” IEEE
3. H. Liu and Z. Zhao, “Manipulating data and dimension reduction methods: Feature
selection,” in Encyclopedia of Complexity and Systems Science. Berlin, Germany: Springer,
4–13.
5. H. Liu and L. Yu, “Toward integrating feature selection algorithms for classification and
6. J. Koza “ Genetic programming: On the programming of computers by means of natural
7. C. Darwin “ On the origin of species by means of natural selection or the preservation of
favoured races in the struggle for life” Cambridge University Press, Cambridge, UK (1864)
8. Peter A. Whigham, and Grant Dick, “Implicitly Controlling Bloat in Genetic Programming,”
10. H. Stringer and A. Wu, “Bloat is unnatural: An analysis of changes invariable
chromosome length absent selection pressure,” Univ. Central Florida, Tech. Rep. CS-TR-04-01,
2004.
algorithms and swarm intelligence for network intrusion detection. International Journal of
Computational Intelligence and Applications 14(04):1550,025, D
13. H. Liu and Z. Zhao, “Manipulating data and dimension reduction methods: Feature
selection,” in Encyclopedia of Complexity and Systems Science. Berlin, Germany: Springer,
4–13.
15. B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimization for feature selection
16. Raymer, M., Punch, W., Goodman, E., & Kuhn, L.. Genetic programming for improved
data mining: Application to the biochemistry of protein interactions. In Proceedings of the first
annual conference on genetic programming (pp. 375–380). Cambridge, Massachusetts: MIT
Press. (1996)
17. Bot, M., & Langdon, W. Application of genetic programming to induction of linear
Academic Press.
Genetic Programming Feature Extraction with Different Robust Classifiers for Network Intrusion Detection


Index Terms

Computer Science

Artificial Intelligence
Keywords

Genetic Programming, Feature Extraction, Neural Network, Support Vector Machines, Decision Trees.