Abstract

In this research work, we propose and simulate a Rayleigh backscattering noise-resilient and cost-effective scheme of standard single mode SSM, single fiber bi-directional optical access network using wavelength division multiplexed passive optical network (WDM-PON) technology. A differential quadrature phase shift keying (DQPSK) optical signal is used at optical line terminal (OLT) for downstream (DS) communication and intensity re-modulation technique is used at optical network unit (ONU) in upstream (US) optical signal, while using centralized laser source and no additional laser at terminals. Simulation setup is prepared in Opt-system 13 and results show that on the aggregate 100 Gbps downstream transmission and 25 Gbps upstream communications for 10 ONUs can be successfully achieved over a longer bidirectional standard single mode fiber (SSMF). It is also observed that proposed single fiber based bidirectional WDM-PON has lower transmission power losses while ensuring high resilience against Rayleigh backscattering (RB) noise and improved receiver sensitivity in both directions of transmission. (Abstract)
References

Technologies of WDM-PON for Future Converged Optical Broadband Access Networks
www.cisco.com
3. Chun-Kit Chan, Lian-Kuan Chen et al. WDM PON for Next-Generation Optical Broadband
4. E. Wong, Current and next-generation broadband access technologies”, presented at the
transmission in WDM single-fiber loopback access networks,” J. Lightwave Technol. 24(2),
Using Wavelength Splitting for Heterogeneous Optical Wired and Wireless Access,” IEEE
7. Jae-Min Lee, Yong-Yuk Won et al, Back-scattering noise reduction using RF tone in
8. Berrettini, Gianluca et al, Colorless WDM-PON Architecture for Rayleigh Backscattering
7,(2009).
DPSK and upstream Re-Modulated OOK Data”, ICTON (2009).
10. L. Banchi, R. Corsini, M. Presi, et al, Enhanced reection tolerance in WDM-PON by
11. Shu-Chuan Lin, San-Liang Lee, et al, Cross-Seeding Schemes for WDM-Based Next-
eneration Optical Access Networks", Journal Of Lightwave Technology, VOL. 29, NO. 24,
(2011).
12. C. H. Yeh and Chow, Signal Remodulation Ring WDM Passive Optical Network with
Rayleigh Backscattering Interferometric Noise Mitigation”, IEEE Comm. Letter, VOL. 15, NO.
13. Jing Xu, Ming Li, et al, Rayleigh Noise Reduction in 10-Gb/s Carrier-Distributed
WDM-PONs Using In-Band Optical Filtering", Journal Of Lightwave Technology, VOL. 29, NO.
24 (2011).
14. Andrea Chiuchiarelli, Presi, et al Enhancing resilience to Rayleigh crosstalk by means of
line coding and electrical _Itering”, IEEE Photonics Technology Letter, 22, (2), pp. 85 { 87,
(2010).
15. Y. Khan, YU Chong et al, Rayleigh-Backscattering Minimization in Single Fiber Colorless
WDM- PON using Intensity Re-modulation Technique”, Optoelectronics Letters Vol. 8 No. 5,
Sept (2012).
16. A. Nakanishi, N. Sasada, Y. Sakuma, et al., “Uncooled (0 to 85°C) and Full C-band
Operation of a 10.7 Gbit/s InP Mach-Zehnder Modulator Monolithically Integrated with SOA,” in
Optical Fiber Communication Conference (OFC), 2013, paper OW1G.3.
A Rayleigh Backscattering Noise Resilient and Cost Effective Single Fiber WDM-PON Scheme using DQPSK


Index Terms

Computer Science

Signal Processing

Keywords
Centralized Light Source; Wavelength Division Multiplexing Passive Optical Network (WDM-PON); Rayleigh Backscattering; Differential Quadrature Phase Shift Keying (DQPSK) Inverse Return-To-Zero (IRZ); Receiver Sensitivity; Optical; communications; Noise mitigation insert (key words)