Abstract

Let $G = (V,E)$ be a colored graph with vertex set $V(G)$ and edge set $E(G)$ with chromatic number $(G)$ and $d_i$ is the degree of a vertex $v_i$. The Randic matrix $R(G) = (r_{ij})$ of a graph $G$, is defined by $r_{ij} = 1/\sqrt{d_id_j}$, if the vertices $v_i$ and $v_j$ are adjacent and $r_{ij} = 0$, otherwise. The Randic energy [5] $RE(G)$ is the sum of absolute values of the eigenvalues of $R(G)$. The concept of Randic color energy $E_{RC}(G)$ of a colored graph $G$ is defined and obtained the Randic color energy $ERC(G)$ of some graphs with minimum number of colors.

References
2. C. Adiga, E. Sampathkumar and M. A. Sriraj, Color Energy of a Unitary Cayley Graph,
3. Bolian Liu, Yufei Huang and Jingfang Feng, A Note on the Randic Spectral Radius,
4. Ş. Burcu Bozkurt, A. Dilek Gungor and Ivan Gutman, Randic Spectral Radius and
5. Ş. Burcu Bozkurt, A. Dilek Gungor, Ivan Gutman and A. Sinan Cevik, Randic Matrix
6. D. M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Theory and Application,
9. B. Furtula and I. Gutman, Comparing energy and Randic energy, Macedonian Journal of
Chemistry and Chemical Engineering, 32(1), (2013), 117-123.
6609-6615.
of Computer and Mathematical Sciences, Vol.6(9), 2015, 485-494.
Mysore, India, 2014.

Index Terms

Computer Science

Applied Mathematics

Keywords

Colored graph, Randic matrix, Randic color energy