Abstract

Emotions play important role in human intelligence, Social Interaction, memory, learning, and more. Emotions are both prevalent in and essential to most aspects of our lives. With the rapid growth of emotion-rich textual content, such as microblog posts, Facebook posts, blogs posts, and forum discussions, such content can be used to unobtrusively identify and track people’s emotions expressed in text. Social networks and micro-blogging tools such as Twitter allow individuals to express their opinions, feelings, and thoughts on a variety of topics in the form of short text messages. These short messages (commonly known as tweets) may also include the emotional states of individuals (such as happiness, anxiety, and depression) as well as the emotions of a larger group. In this research work, the sentiment is aimed to overcome the problem of automatically classifying user tweets into positive opinion and negative opinion. The classifier Naïve Bayes (NB) used in this study is a machine learning technique that is popular text classifiers. Therefore, we proposed Multiclass Hierarchal Emotion based Classification using text mining applications to classify user tweets. Proposed method provides an effective way to immediately and accurately categorize multiclass sentiment tweets classification without
need of exterior data, outperforming a content-based approach. The implementation of the proposed concept is provided using the JAVA environment. Additionally, the comparative performance is also compared with traditional. In order to compare the performance of the algorithms, the accuracy, error rate, memory consumption, and time consumption is taken as standard parameters.

References

11. A.H. Tan, Text Mining: The State of the Art and the Challenges, in PAKDD99 Workshop on Knowledge Discovery from advanced Databases, Beijing, China, April 1999.
Index Terms

Computer Science

Information Sciences

Keywords

SVM, Bayesian, Sentiment Analysis, Tweeter, Social Media, Classification, Text Mining, Multiclass Classification, POS