Abstract

In this paper, the author proposes an optimal management for system on chip (SoC) memory by using the reserved memory components and solving the covering fault problem. This method will enable to realize many services, such as SoC diagnosis with given resolution of fault location, real-time functional testing of input patterns and analysis of output reactions.

References

4. V. Hahanov, W. Gharibi, K. Mostovaya, Embedded method of SoC memory repairing,
SoC Memory Management for Reducing Fault Problem from Reserved Memory Components

Electronics and Electrical Engineering 90 (2009).
5. P. Rashinkar, P. Paterson, L. Singh, System-on-chip Verification: Methodology and
6. Y. Zorian, S. Shoukourian, Embedded-memory test and repair: infrastructure IP for SoC
7. Y. Zorian, A. Yessayan, IEEE 1500 utilization in SoC design and test, in: ITC International
 Test Conference, 2005.
9. L. Youngs, S. Paramanandam, Mapping and repairing embedded-memory defects, IEEE
10. A.N. Parfentiy, V.I. Hahanov, E.I. Litvinova, SOC Infrastructure intellectual property
11. V.I. Hahanov, I.V. Hahanova, VHDL + Verilog = synthesis for minutes, SMIT, Kharkov,
 2007, p. 264.
12. Z. Yervant, What is infrastructure IP, IEEE Design & Test of Computers, May-June,
 2002, pp. 5-7.
13. IEEE 1500 Web Site, available online at: http://grouper.ieee.org/groups/1500/.
 and Diagnosis of Computer Systems and Networks, NMTS VO, Kiev, 2000, p. 306.
15. V. Hahanov, E. Litvinova, V. Obrizan, W. Gharibi, Embedded method of SoC diagnosis,
16. V. Hahanov, W. Gharibi, K. Mostovaya, embedded method of SoC memory repairing,
 Electronics and Electrical Engineering 90 (2009).

Index Terms

Computer Science
Circuits and Systems

Keywords

Diagnosis, system on chip, infrastructure intellectual property, fault, built in repair analysis, built
in self repair.