Call for Paper - January 2023 Edition
IJCA solicits original research papers for the January 2023 Edition. Last date of manuscript submission is December 20, 2022. Read More

Reconfigurable Memristor and CNFET based Four Quadrant Multiplier for Low Power Applications

Print
PDF
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2017
Authors:
Mohd. Ajmal Kafeel, Mohammad Zulqarnain, Mohd. Hasan
10.5120/ijca2017915324

Mohd. Ajmal Kafeel, Mohammad Zulqarnain and Mohd. Hasan. Reconfigurable Memristor and CNFET based Four Quadrant Multiplier for Low Power Applications. International Journal of Computer Applications 173(6):14-20, September 2017. BibTeX

@article{10.5120/ijca2017915324,
	author = {Mohd. Ajmal Kafeel and Mohammad Zulqarnain and Mohd. Hasan},
	title = {Reconfigurable Memristor and CNFET based Four Quadrant Multiplier for Low Power Applications},
	journal = {International Journal of Computer Applications},
	issue_date = {September 2017},
	volume = {173},
	number = {6},
	month = {Sep},
	year = {2017},
	issn = {0975-8887},
	pages = {14-20},
	numpages = {7},
	url = {http://www.ijcaonline.org/archives/volume173/number6/28339-2017915324},
	doi = {10.5120/ijca2017915324},
	publisher = {Foundation of Computer Science (FCS), NY, USA},
	address = {New York, USA}
}

Abstract

In this paper, a reconfigurable, low power four quadrant memristor and carbon nanotube field effect Transistor (CNFET) based analog multiplier is proposed. The circuit is verified by extensive HSPICE simulations using experimentally verified memristor and Stanford CNFET models that have been calibrated for 90% accuracy at the 32nm technology node. The proposed multiplier has an input range of ±0.25V, extremely large bandwidth of 30.5 GHz, and consumes just 43.8μW of power along with low total harmonic distortion (THD% ≤0.75) and significant noise suppression at a supply voltage of ±0.3V.

References

  1. Z. Biolek, D. Biolek, and V. Biolkova, “A SPICE model of memristor with non-linear dopant drift,'' Radio Eng. J., vol. 18, no. 2, p. 211, 2009.
  2. K. Bult and H. Wallinga, “A four-quadrant analog multiplier,” IEEE Journal of Solid-State Circuits, vol. Sc-21, no.3, pp. 430-435, June 1986.
  3. Leon O. Chua. “Memristor-the missing circuit element” IEEE Transactions on Circuit Theory, 18(5):507–519, Sep 1971.
  4. A. L. Coban, P. E. Allen, and X. Shi, “Low-voltage Analog IC design in CMOS technology,” IEEE Trans. Circuits Syst.-I, vol. 42, pp. 955–958, Nov. 1995.
  5. G. Colli and F. Montecchi, “Low voltage low power CMOS four quadrant analog multiplier for neural network applications,” In Proc. ISCAS, May 1996, pp. 496–499.
  6. J. Deng and A. Wang, “A compact SPICE model for carbon –nanotube field-effect transistors including nonidealities and its application- Part I: Model of the intrinsic channel region,” IEEE Transactions on Electron Devices, Vol. 54, No. 12, pp. 3186-3194, Dec. 2007.
  7. J. Deng, and H.-S. P. Wong, “A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application - part II: full device model and circuit performance benchmarking,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3195-3205, Dec. 2007.
  8. Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and Williams R. Stanley. “The missing memristor found”. Nature, 453(7191):80–83, May 2008.
  9. T. Driscoll, J. Quinn, S. Klein, H. T. Kim, B. J. Kim, Yu. V. Pershin, M. Di Ventra, and D. N. Basov.,”Memristive adaptive filters,” Applied Physics Letters, 97(9):093502, 2010.
  10. B. Gibert, “A precision four-quadrant multiplier with sub-nanosecond response,” IEEE J. Solid-State Circuits, vol. SC-3, no. 6, pp. 353–365, Dec. 1968.
  11. H. F. Hamed, F. A. Farg, M. S. A. El-Hakeem, (2002) “A new wideband BiCMOS four-quadrant analog multiplier,” In Proc. IEEE Int. Symp. Circuits and Systems, vol. 1, pp. I-729-I-732.
  12. Hidayat, R., Dejhan, K., Moungnoul, P., and Miyanaga,Y.,”OTA-based high frequency CMOS multiplier and squaring circuit,” In International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS 2008), 1 – 4. 2008.
  13. S. Hsiao and C. Wu, ”A Parallel Structure for CMOS Four-Quadrant Analog Multipliers and Its Application to a 2-GHz RF Down Conversion Mixer,” IEEE Journal of solid state circuits, vol. 33, pp.859-869, Jun. 1998.
  14. Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors(ITRS), 2009, available www.itrs.net, online.
  15. Y. N. Joglekar and S. J. Wolf, “The elusive memristor: properties of basic electrical circuits,” vol. 30, p. 661, 2009.
  16. Kiatwarin, N., Sawigun C., & Kiranon, W . “A low voltage four quadrant analog multiplier using Triode MOSFETs,” International Symposium on Communications and Information Technologies (ISCIT '06), 1105 – 1108.2006
  17. H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu,” Multichannel Ballistic Transport in Multiwall Carbon nanotubes,” Physical Review Letters, 95(8), Article ID 086601, 4 pages, 2005.
  18. S. Liu and C. Chang, “CMOS subthreshold four quadrant multiplier based on unbalanced source coupled pairs,” International Journal of Electronics, vol. 78, pp. 327–332, Feb. 1995.
  19. S.-I. Liu, “Low voltage CMOS four-quadrant multiplier,” Electron. Lett.,vol. 30, no. 25, pp. 2125–2126, Dec. 1994.
  20. Makwana, I. and Sheth, V.”A low Power High Bandwidth Four Quadrant Analog multiplier in 32nm CNFET technology.” International Journal of VLSI design and Communication Systems,3(2), 73-83. April 2012.
  21. J. W. Mintmire and C. T. White “ Universal density of states for carbon nanotubes, “ Phys. Rev. Lett., vo. 81, no. 12, pp. 2506 – 2508, 1998.
  22. J. W. Mintmire, B. I. Dunlap, and C. T. White, “Are fullerene tubules metallic? ,” Phys. Rev. Lett., Vol. 68, pp. 631–634, Feb. 1992.
  23. Moore, G.E. “Cramming more components onto integrated circuits”. Electronics 1965, 38, 114–117.
  24. J. S. Pena-Finol and J. A. Connelly, (1987) “A MOS Four Quadrant Analog Multiplier Using the Quarter-Square Technique,” IEEE J. Solid-State circuits, vol.SC-22, pp.1064-1073.
  25. Yuriy V. Pershin and Massimiliano Di Ventra. “Practical approach to programmable analog circuits with memristors”, IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8):1857–1864, Aug 2010.
  26. J. Ram´ırez-Angulo, “Highly linear four-quadrant analog BiCMOS multiplier for 1.5V supply operation,” Electron. Lett., vol. 28, p. 1783, Sept. 1992.
  27. Sawigun, C., Demosthenous, A., “Compact low voltage CMOS four-quadrant analogue multiplier. “Electronics Letters, 42(20), 1149-1150. 2006.
  28. Sangho Shin, Kyungmin Kim, and Sung-Mo Kang, “Memristor-based fine resolution programmable resistance and its applications,” In Proc. International Conference on Communications, Circuits and Systems, pages 948–951, Jul 2009.
  29. Sangho Shin, Kyungmin Kim, and Sung-Mo Kang, “Memristor applications for programmable analog ICs,” IEEE Transactions on Nanotechnology, 10(2):266–274, Mar 2011.
  30. Stanford University Carbon Nanotube FET Model. Retrieved from http://nano.stanford.edu/models.php.
  31. Z. Wang, “A four-transistor four-quadrant analog multiplier using MOS transistors operating in the saturation region,” IEEE Trans. Instrum. Meas., vol. 42, pp. 75–77, Feb. 1993.
  32. Mohd Ajmal Kafeel, Mohammad Zulqarnain, Mohd. Hasan, Muhmmad Shah Alam, “Design and Performance Analysis of Tunnel Field Effect Transistor (TFET) Based Current Conveyor for Ultra Low Power Biomedical Applications,” J. of Active and Passive Electronic Devices, Vol.11, pp.229-242,Old City Publishing, Inc.
  33. Mohd Ajmal Kafeel, Mohd. Hasan, Muhammad Shah Alam, Aminul Islam, “Performance Evaluation of CNFET Based Single-Ended 6T SRAM Cell,” Wulfenia Journal, Klagenfurt Austria, Vol. (20), No. (7), pp. 364-383, 2013.
  34. S. D. Pable, Mohd. Ajmal Kafeel, A. K.Kureshi, and Mohd. Hasan, “Robustness Comparison of Emerging Devices for Portable Applications,” Journal of Nanomaterials, Hindawi Publishing Corporation, Vol. (2012), Feb. 2012.

Keywords

CNFET; memristor (M); analog multiplier; amplitude modulation; low power.