CFP last date
22 April 2024
Call for Paper
May Edition
IJCA solicits high quality original research papers for the upcoming May edition of the journal. The last date of research paper submission is 22 April 2024

Submit your paper
Know more
Reseach Article

Use of IoT to Real-time Monitoring of Storage Silo and Ozone Gas Fungal Decontamination Strategy

by Carlos Soares, Eliza Gomes, Fabiano Dahlke, Carlos De Rolt, Patricia Plentz, Mario Dantas, Vildes Scussel
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 175 - Number 16
Year of Publication: 2020
Authors: Carlos Soares, Eliza Gomes, Fabiano Dahlke, Carlos De Rolt, Patricia Plentz, Mario Dantas, Vildes Scussel
10.5120/ijca2020920663

Carlos Soares, Eliza Gomes, Fabiano Dahlke, Carlos De Rolt, Patricia Plentz, Mario Dantas, Vildes Scussel . Use of IoT to Real-time Monitoring of Storage Silo and Ozone Gas Fungal Decontamination Strategy. International Journal of Computer Applications. 175, 16 ( Sep 2020), 1-7. DOI=10.5120/ijca2020920663

@article{ 10.5120/ijca2020920663,
author = { Carlos Soares, Eliza Gomes, Fabiano Dahlke, Carlos De Rolt, Patricia Plentz, Mario Dantas, Vildes Scussel },
title = { Use of IoT to Real-time Monitoring of Storage Silo and Ozone Gas Fungal Decontamination Strategy },
journal = { International Journal of Computer Applications },
issue_date = { Sep 2020 },
volume = { 175 },
number = { 16 },
month = { Sep },
year = { 2020 },
issn = { 0975-8887 },
pages = { 1-7 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume175/number16/31533-2020920663/ },
doi = { 10.5120/ijca2020920663 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:25:10.175900+05:30
%A Carlos Soares
%A Eliza Gomes
%A Fabiano Dahlke
%A Carlos De Rolt
%A Patricia Plentz
%A Mario Dantas
%A Vildes Scussel
%T Use of IoT to Real-time Monitoring of Storage Silo and Ozone Gas Fungal Decontamination Strategy
%J International Journal of Computer Applications
%@ 0975-8887
%V 175
%N 16
%P 1-7
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

During the food production process, qualitative losses are caused by biological contaminants (fungi, mycotoxins, and insects) and chemical contaminants (pesticide residues), widely found in grain storage. Several species of fungi, when they find ideal conditions for their development in the silos, cause damage to the grains (clod formation, grain heating, discoloration, loss of germination vigor, reduced nutritional value) and produce mycotoxins. With the advent of the new globalization, the demands for quality and sustainable products are becoming stronger. Thus, digital transformation is a differential for the productive market, inserting disruptive technologies, to become increasingly competitive. Therefore, monitoring of physical and biological conditions by intelligent systems in grain storage environments is required, as well as sustainable decontamination strategies (method-green). Therefore, in this article is proposed the use of IoT technology for monitoring and detecting the proliferation of different fungal species, having as parameters the temperature and humidity produced by fungal growth in (sites) of the grain storage silo. Besides, the use of ozone gas (GRAS - generally recognized as safe) is proposed as a useful alternative for fungal decontamination inside the storage unit silos and an automated real-time gas release system.

References
  1. Menithen Beber-Rodrigues, Geovana D Savi, and Vildes M Scussel. Ozone effect on fungi proliferation and genera susceptibility of treated stored dry paddy rice (oryza sativa l.). Journal of Food Safety, 35(1):59–65, 2015.
  2. Xijuan Chen, Jessica Richard, Yaling Liu, Elke Dopp, Jochen Tuerk, and Kai Bester. Ozonation products of triclosan in advanced wastewater treatment. Water Research, 46(7):2247– 2256, 2012.
  3. D Christ, GD Savi, and VM Scussel. Effectiveness of ozone gas in raw and processed food for fungi and mycotoxin decontamination–a review. Journal of Chemical, Biological and Physical Sciences, 6(2):326–348, 2016.
  4. D Christ, GD Savi, and VM Scussel. Effectiveness of ozone gas application methods against combined multicontaminants in food. Food Public Health, 7(3):51–58, 2017.
  5. Carlos Eduardo da Silva Soares, Andr´e Weber, and Vildes Maria Scussel. Stereo and scanning electron microscopy characteristics of poultry breeding beetle (alphitobius diaperinus)–a filamentous toxigenic fungi carrier. Emirates Journal of Food and Agriculture, 2018.
  6. Ernandes R de Alencar, Lˆeda RD Faroni, Adilio F Lacerda Filho, Luiz A Peternelli, and Andr´e R Costa. Qualidade dos gr˜aos de soja armazenados em diferentes condic¸ ˜oes. R. Bras. Eng. Agr´ic. Ambiental, 13(5):606–613, 2009.
  7. Jamilton Pereira dos Santos and Evandro Chartuni Mantovani. Perdas de gr˜aos na cultura do milho: pr´e-colheita, colheita, transporte e armazenamento. Embrapa Milho e Sorgo- Circular T´ecnica (INFOTECA-E), 1997.
  8. Drazen Duricic, Hrvoje Valpotic, and Marko Samardzija. Prophylaxis and therapeutic potential of ozone in buiatrics: Current knowledge. Animal Reproduction Science, 159:1 – 7, 2015.
  9. FASTEN. Flexible and autonomous manufacturing systems for custom-designed products, 2020. http://www.fastenmanufacturing.eu/. [Accessed Aug/2020].
  10. E.H.A Gomes, M.A.R. Dantas, and P.D.M. Plentz. Proposal for a health-care environment with a real-time approach. Internacional Journal of Grid and Utility Computing. in press.
  11. Grafana. Grafana labs, 2020. https://grafana.com/. [Accessed Aug/2020].
  12. InfluxData. Influxdata, 2020. https://www.influxdata.com/. [Accessed Aug/2020].
  13. Apache Kafka. Apache kafka: A distributed streaming platform, 2020. https://kafka.apache.org/. [Accessed Aug/2020].
  14. Stephen A Kells, Linda J Mason, Dirk E Maier, and Charles P Woloshuk. Efficacy and fumigation characteristics of ozone in stored maize. Journal of Stored Products Research, 37(4):371–382, 2001.
  15. J-G Kim and AE Yousef. Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone. Journal of Food Science, 65(3):521–528, 2000.
  16. Airton Kunz, Renato S Freire, Jarbas JR Rohwedder, Nelson Duran, Hector Mansilla, Jaime Rodriguez, et al. Construc¸ ˜ao e otimizac¸ ˜ao de um sistema para produc¸ ˜ao e aplicac¸ ˜ao de ozˆonio em escala de laborat´orio. Qu´imica nova, 22(3):425– 428, 1999.
  17. P Lema, MJ Acosta, R Barboza, S Barrios, G Cama˜no, and MJ Crosa. Estimaci´on de p´erdidas y desperdicio de alimentos en el uruguay: Alcance y causas [internet]. montevideo: Fao; 2017 [cited 2018 nov 27]. 116 p.
  18. Maur´icio Antˆonio Lopes. Escolhas estrat´egicas para o agroneg´ocio brasileiro. Revista de Pol´itica Agr´icola, 26(1):151–154, 2016.
  19. IRINEU LORINI Lorini. Manejo integrado de pragas de gr˜aos de cereais armazenados. Embrapa Trigo, 2008.
  20. LINDA J Mason, CP Woloshuk, and DE Maier. Efficacy of ozone to control insects, molds and mycotoxins. In International Conference on Controlled Atmosphere and Fumigation in Stored Products, ed by Donahaye EJ, Navarro, S., Varnava, A., Printco, Ltd, Nicosia, Cyprus, pages 665–670, 1997.
  21. Marissa X McDonough, Carlos A Campabadal, Linda J Mason, Dirk E Maier, Adrian Denvir, and Charles Woloshuk. Ozone application in a modified screw conveyor to treat grain for insect pests, fungal contaminants, and mycotoxins. Journal of Stored Products Research, 47(3):249–254, 2011.
  22. B Mennad, Z Harrache, D Amir Aid, and A Belasri. Theoretical investigation of ozone production in negative corona discharge. Current Applied Physics, 10(6):1391–1401, 2010.
  23. MQTT. Message queuing telemetry transport protocol, 2020. http://mqtt.org/. [Accessed Aug/2020].
  24. D. M. D. Queiroz and D. S.M. Valente. Secagem de gros para unidades de armazenamento. pages 231–278, 2018.
  25. Geovana D Savi, Karim C Piacentini, and Vildes M Scussel. Reduction in residues of deltamethrin and fenitrothion on stored wheat grains by ozone gas. Journal of Stored Products Research, 61:65–69, 2015.
  26. V. M. Scussel, G. D. Savi, and A. M. Kluczkovski. Fungos e micotoxinas associados a gros armazenados. pages 735–758, 2018.
  27. A. H. D. Sousa and L. R. D. Faroni. Atmosferas modificadas como alternativa de controle de insetos-pragas de produtos armazenados. pages 421–452, 2018.
  28. Rubens Andr´e Tabile, Anderson de TOLEDO, Rouverson Pereira da SILVA, Carlos Eduardo Angeli Furlani, Jorge Wilson Cortez, and Danilo C´esar Checchio Grotta. Perdas na colheita de milho em func¸ ˜ao da rotac¸ ˜ao do cilindro trilhador e umidade dos gr˜aos. Scientia Agraria, 9(4):505–510, 2008.
  29. Jes´us Mart´in Talavera, Luis Eduardo Tob´on, Jairo Alejandro G´omez, Mar´ia Alejandra Culman, Juan Manuel Aranda, Diana Teresa Parra, Luis Alfredo Quiroz, Adolfo Hoyos, and Luis Ernesto Garreta. Review of iot applications in agroindustrial and environmental fields. Computers and Electronics in Agriculture, 142:283–297, 2017.
  30. C. Taurion. O Primeiro Passo: A Transformao Digital como base para os negcios Ps-Digitais no sculo 21. 2016.
  31. VERNEMQ. Vernemq, 2020. https://vernemq.com/. [Accessed Aug/2020].
  32. Ping-ping Xiao and Chao Wang. The design of intelligent fungi trainingsystem basedon zigbee technology. In 2018 7th International Conference on Energy and Environmental Protection (ICEEP 2018). Atlantis Press, 2018.
Index Terms

Computer Science
Information Sciences

Keywords

Ozone gas Real-time Grain storage Fungi Monitoring environment