Call for Paper - November 2023 Edition
IJCA solicits original research papers for the November 2023 Edition. Last date of manuscript submission is October 20, 2023. Read More

Machine Learning to Estimate the Floating Population in Florianopolis

International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2020
Denilton Luiz Darold, Carlos Roberto Da Rolt, Andrea Sabbioni

Denilton Luiz Darold, Carlos Roberto Da Rolt and Andrea Sabbioni. Machine Learning to Estimate the Floating Population in Florianopolis. International Journal of Computer Applications 175(27):1-6, October 2020. BibTeX

	author = {Denilton Luiz Darold and Carlos Roberto Da Rolt and Andrea Sabbioni},
	title = {Machine Learning to Estimate the Floating Population in Florianopolis},
	journal = {International Journal of Computer Applications},
	issue_date = {October 2020},
	volume = {175},
	number = {27},
	month = {Oct},
	year = {2020},
	issn = {0975-8887},
	pages = {1-6},
	numpages = {6},
	url = {},
	doi = {10.5120/ijca2020920812},
	publisher = {Foundation of Computer Science (FCS), NY, USA},
	address = {New York, USA}


Touristic cities experience high fluctuation in their population, especially during the summer season. For many cities and countries, tourism plays a vital role in the economy, generating revenue and creating jobs. However, this so welcome economic boost comes along with an overload on public services, once the population increases dramatically in the high season. Therefore, an accurate method to predict the touristic demand is critical to provide the city administrators the necessary information for proper planning. Moreover, the private sector depends on demand forecasting to invest and maximize its profits. The most used methods currently rely on surveys and traditional indicators like the hotel


  1. M. Novelli e J. M. Cheer C. Milano. Overtourism and Tourismphobia: A Journey Through Four Decades of Tourism Development, Planning and Local Concerns. 2019.
  2. Andr´es Camacho Murillo. Methods and measurement techniques in tourism. Turismo y Sociedad, 24(November):211–216, 2018.
  3. Paulo Campanario. Florian´opolis: dinˆamica demogr´afica e projec¸ ˜ao da populac¸ ˜ao por sexo, grupos et´arios, distritos e bairros (1950-2050). Ipuf, 2007.
  4. Rute Eduviges Godinho. Nova metodologia de projec¸ ˜ao da populac¸ ˜ao flutuante. 1:1–13, 2000.
  5. Eliza Gomes, M. A.R. Dantas, Douglas D.J. De Macedo, Carlos De Rolt, Marcelo Luiz Brocardo, and Luca Foschini. Towards an infrastructure to support big data for a smart city project. Proceedings - 25th IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE 2016, pages 107–112, 2016.
  6. Antonio Guarda. Gest˜ao Urbana : Projec¸ ˜ao da Populac¸ ˜ao Flutuante Gest˜ao Urbana : Projec¸ ˜ao da Populac¸ ˜ao Flutuante. (January 2012), 2015.
  7. M. de la Calle-Vaquero e C. Yubero M. Garc´ia-Hern´andez. Cultural heritage and urban tourism: Historic city centres under pressure, Planning and Local Concerns. 9(8):4–8, 2017.
  8. Brazilian Institute of Geography and Statistics. Cities and States. cidades-e-estados/sc/florianopolis.html, 2019. [Online; accessed 28-June-2019].
  9. European Capital of Smart Tourism Secretariat. European capital of smart tourism, Oct 2018.
  10. Pedro Tonon Zuanazzi and Mariana Bartels. Estimativas para a populac¸ ˜ao flutuante do Litoral Norte do RS. page 29, 2016.
  11. Sergio Dalla Valle. Metodologie di integrazione di crowdsensing e big data dal territorio : l ’ esperienza Participact Brazil per smart city. PhD thesis, UNIBO, 2018.
  12. WTTC. Travel and tourism economic impact 2018 world, Oct 2018.


Floating population, seasonality, tourism measurement, machine learning