Abstract

Over the years, large amount of transferred information has been attacked by hackers; so it has been considerable to make all effort for securing data and encrypting the information. Color images represent a very vital and important type of multimedia; so many encryption techniques have been proposed to protect the color image against different types of attacks. In this paper two proposed techniques will be introduced which have had high robustness against complex composite form of attacks. Discrete Wavelet Transform (DWT) has been applied for image transformation in one method and Discrete Cosine Transform (DCT) has been applied in the other one. Six various chaotic maps have been used with different parameters to introduce the needed encryption keys for the proposed approaches. After many extensive comparisons with other traditional techniques it has been found that the proposed algorithms have given better performance against both friendly and hard forms of complex composite attacks.

References

19. Table 2. performance metrics in case DCT technique against Friendly Gaussian attack for image (1)

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Reference no. (14) without using filter</th>
<th>Reference no. (14) with using median filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chirikov</td>
<td>0.1993</td>
<td>0.2412</td>
</tr>
<tr>
<td>Chirikovtan</td>
<td>0.2029</td>
<td>0.1945</td>
</tr>
<tr>
<td>Henon</td>
<td>0.2784</td>
<td>0.2219</td>
</tr>
<tr>
<td>Ikeda</td>
<td>0.7704</td>
<td>0.7911</td>
</tr>
<tr>
<td>Logistic</td>
<td>15819</td>
<td>15388</td>
</tr>
<tr>
<td>Quadratic</td>
<td>6.1391</td>
<td>6.2590</td>
</tr>
<tr>
<td>MSE</td>
<td>4.9858e+03</td>
<td>5.9206e+03</td>
</tr>
<tr>
<td>PSNR</td>
<td>11.1535</td>
<td>10.4071</td>
</tr>
<tr>
<td>R</td>
<td>0.1447</td>
<td>0.0713</td>
</tr>
<tr>
<td></td>
<td>0.1392</td>
<td></td>
</tr>
</tbody>
</table>
64. 0.1382
65. 0.0482
66. 0.1196
67. 0.1545
68. 0.1846
69.
70. NPCR
71. 5.0863e-04
72. 5.0863e-04
73. 5.0863e-04
74. 5.0863e-04
75. 5.0863e-04
76. 5.0863e-04
77. 0.00074
78. 0.00074
79.
80. UACI
81. 16.1221
82. 20.957
83. 23.5832
84. 24.6248
85. 19.8354
86. 24.1143
87. 28.221
88. 29.1083
89.
90. Entropy of original image
91. 7.0237
92. 7.0237
93. 7.0237
94. 7.0237
95. 7.0237
96. 7.0237
97. 7.2638
98. 7.2331
99.
100. Table 3. performance metrics in case DWT technique against Friendly Gaussian attack for image (1)
101. Metrics
102. Chirikov
103. Chirikovtan
104. Henon
105. Ikeda
106. Logistic
107. Quadratic
108. Reference no.(14) without using filter
109. Reference no.(14) with using median filter
110.
111. Elapsed time
112. 0.8500
113. 0.3440
114. 0.3309
115. 0.3470
116. 0.2938
117. 0.3101
118. 0.6259
119. 0.6296
120.
121. MSE
122. 5.5680e+03
123. 6.4874e+03
124. 6.2872e+03
125. 6.5382e+03
126. 7.8959e+03
127. 6.5768+03
128. 10495
129. 10066
130.
131. PSNR
132. 10.6738
133. 10.0101
134. 10.1462
135. 9.9762
136. 9.1568
137. 9.9507
138. 7.9209
139. 8.1021
140.
141. R
142. 0.0564
143. -0.0407
144. 0.0925
145. 0.1119
146. 0.0990
147. 0.1079
148. 0.4341
149. 0.4601
150.
151. NPCR
152. 5.0863e-04
153. 5.0863e-04
154. 5.0863e-04
DCT versus DWT Chaotic based Color Image Encryption

Table 4. performance metrics in case DCT technique against Friendly Salt & pepper attack for image (1)

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Chirikov</th>
<th>Chirikovtan</th>
<th>Henon</th>
<th>Ikeda</th>
<th>Logistic</th>
<th>Quadratic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference no.(14) without using filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elapsed time</td>
<td>0.2832</td>
<td>0.2392</td>
<td>0.2735</td>
<td>0.2356</td>
<td>0.2793</td>
<td>0.2328</td>
</tr>
<tr>
<td></td>
<td>0.7704</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.7911</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>MSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>5.0258e+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>5.9488e+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>6.2634e+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>6.5267e+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>7.3485e+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>6.5773e+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>15819</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>15388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>PSNR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>11.1188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>10.3865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>10.1627</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>9.9839</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>9.4688</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>9.9503</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>6.1391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>6.2590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>0.1489</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>0.0730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>0.1403</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>0.1383</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>0.0585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>0.1196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>0.1545</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>0.1846</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>NPCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>0.00074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>0.00074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>UACI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>16.3549</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>21.0561</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>23.5637</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DCT versus DWT Chaotic based Color Image Encryption

246. 24.6179
247. 20.1300
248. 24.1069
249. 28.221
250. 29.1083
251.
252. Entropy of original image
253. 7.0237
254. 7.0237
255. 7.0237
256. 7.0237
257. 7.0237
258. 7.0237
259. 7.2638
260. 7.2331
261.
262. Table 5. performance metrics in case DWT technique against Friendly Salt & pepper attack for image (1)
263. Metrics
264. Chirikov
265. Chirikovtan
266. Henon
267. Ikeda
268. Logistic
269. Quadratic
270. Reference no.(14) without using filter
271. Reference no.(14) with using median filter
272.
273. Elapsed time
274. 0.3285
275. 0.3110
276. 0.3029
277. 0.3052
278. 0.2761
279. 0.3189
280. 0.6259
281. 0.6296
282.
283. MSE
284. 5.17134e+03
285. 6.5918e+03
286. 6.270e+03
287. 6.5332e+03
288. 7.8802e+03
289. 6.5726e+03
290. 10495
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>291.</td>
<td>10066</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>292.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293.</td>
<td>PSNR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>294.</td>
<td>10.5618</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>295.</td>
<td>9.9408</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>296.</td>
<td>10.1519</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>297.</td>
<td>9.9795</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>298.</td>
<td>9.1654</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>299.</td>
<td>9.9534</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300.</td>
<td>7.9209</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301.</td>
<td>8.1021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>302.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303.</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>304.</td>
<td>0.0501</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305.</td>
<td>-0.0475</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>306.</td>
<td>0.0918</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>307.</td>
<td>0.1121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>308.</td>
<td>0.1006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>309.</td>
<td>0.1081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310.</td>
<td>0.4341</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>311.</td>
<td>0.4601</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>313.</td>
<td>NPCR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>314.</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315.</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>316.</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>317.</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>318.</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>319.</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320.</td>
<td>0.00074</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>321.</td>
<td>0.00074</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>322.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>323.</td>
<td>UACI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>324.</td>
<td>17.8973</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>325.</td>
<td>22.1792</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>326.</td>
<td>23.3656</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>327.</td>
<td>24.5492</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>328.</td>
<td>16.0898</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>329.</td>
<td>24.0194</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330.</td>
<td>5.6079</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>331.</td>
<td>5.3108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>332.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333.</td>
<td>Entropy of original image</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>334.</td>
<td>7.0237</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>335.</td>
<td>7.0237</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>336.</td>
<td>7.0237</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6. performance metrics in case DCT technique against Friendly Speckle attack for image (1)

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Chirikov</th>
<th>Chirikov\tan</th>
<th>Henon</th>
<th>Ikeda</th>
<th>Logistic</th>
<th>Quadratic</th>
<th>Reference no.(14) without using filter</th>
<th>Reference no.(14) with using median filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elapsed time</td>
<td>0.2657</td>
<td>0.6580</td>
<td>0.2695</td>
<td>0.2580</td>
<td>0.2429</td>
<td>0.2412</td>
<td>0.7704</td>
<td>0.7911</td>
</tr>
<tr>
<td>MSE</td>
<td>5.0954e+03</td>
<td>6.0033e+03</td>
<td>6.3019e+03</td>
<td>6.5483e+03</td>
<td>7.3426e+03</td>
<td>6.5925e+03</td>
<td>15819</td>
<td>15388</td>
</tr>
<tr>
<td>Metrics</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chirikov</td>
<td>11 / 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7 performance metrics in case DWT technique against Friendly Speckle attack for image (1)
DCT versus DWT Chaotic based Color Image Encryption

427. ğ Chirikovtan
428. ğ Henon
429. ğ Ikeda
430. ğ Logistic
431. ğ Quadratic
432. ğ Refrence no.(14) without using filter
433. ğ Refrence no.(14) with using median filter
434. ğ
435. ğ Elapsed time
436. ğ 0.3574
437. ğ 0.2701
438. ğ 0.3522
439. ğ 0.3120
440. ğ 0.2930
441. ğ 0.3049
442. ğ 0.6259
443. ğ 0.6296
444. ğ
445. ğ MSE
446. ğ 5.747e+043
447. ğ 6.5952e+03
448. ğ 6.3071e+03
449. ğ 6.5553e+03
450. ğ 7.8616e+03
451. ğ 6.5878e+03
452. ğ 10495
453. ğ 10066
454. ğ
455. ğ PSNR
456. ğ 10.5411
457. ğ 9.9385
458. ğ 10.1325
459. ğ 9.9649
460. ğ 9.1757
461. ğ 9.9437
462. ğ 7.9209
463. ğ 8.1021
464. ğ
465. ğ R
466. ğ 0.0429
467. ğ -0.0508
468. ğ 0.0940
469. ğ 0.1120
470. ğ 0.1007
471. ğ 0.1079
472. ğ 0.4341
473. 0.4601
474.
475. NPCR
476. 5.0863e-04
477. 5.0863e-04
478. 5.0863e-04
479. 5.0863e-04
480. 5.0863e-04
481. 5.0863e-04
482. 0.00074
483. 0.00074

484.

485. UACI
486. 18.2553
487. 22.3527
488. 23.5403
489. 24.6183
490. 16.2727
491. 24.0672
492. 5.6079
493. 5.3108
494.

495. Entropy of original image
496. 7.0237
497. 7.0237
498. 7.0237
499. 7.0237
500. 7.0237
501. 7.0237
502. 5.9133
503. 5.6448
504.

505. Table 8. performance metrics in case DCT technique against Hard Gaussian attack
for image (1)

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Chirikov</th>
<th>Chirikovtan</th>
<th>Henon</th>
<th>Ikeda</th>
<th>Logistic</th>
<th>Quadratic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.4601</td>
<td>5.0863e-04</td>
<td>0.00074</td>
<td>18.2553</td>
<td>7.0237</td>
<td>22.3527</td>
</tr>
</tbody>
</table>

510. Elapsed time
511. 0.3141
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>518.</td>
<td>0.2958</td>
</tr>
<tr>
<td>519.</td>
<td>0.3173</td>
</tr>
<tr>
<td>520.</td>
<td>0.3342</td>
</tr>
<tr>
<td>521.</td>
<td>0.3111</td>
</tr>
<tr>
<td>522.</td>
<td>0.3327</td>
</tr>
<tr>
<td>523.</td>
<td>0.7704</td>
</tr>
<tr>
<td>524.</td>
<td>0.7911</td>
</tr>
<tr>
<td>525.</td>
<td></td>
</tr>
<tr>
<td>526.</td>
<td>MSE</td>
</tr>
<tr>
<td>527.</td>
<td>4.1465e+03</td>
</tr>
<tr>
<td>528.</td>
<td>4.1570e+03</td>
</tr>
<tr>
<td>529.</td>
<td>4.1436e+03</td>
</tr>
<tr>
<td>530.</td>
<td>4.1516e+03</td>
</tr>
<tr>
<td>531.</td>
<td>4.1456e+03</td>
</tr>
<tr>
<td>532.</td>
<td>4.1510e+03</td>
</tr>
<tr>
<td>533.</td>
<td>15819</td>
</tr>
<tr>
<td>534.</td>
<td>15388</td>
</tr>
<tr>
<td>535.</td>
<td></td>
</tr>
<tr>
<td>536.</td>
<td>PSNR</td>
</tr>
<tr>
<td>537.</td>
<td>11.9540</td>
</tr>
<tr>
<td>538.</td>
<td>11.9430</td>
</tr>
<tr>
<td>539.</td>
<td>11.9571</td>
</tr>
<tr>
<td>540.</td>
<td>11.9486</td>
</tr>
<tr>
<td>541.</td>
<td>11.9550</td>
</tr>
<tr>
<td>542.</td>
<td>11.9493</td>
</tr>
<tr>
<td>543.</td>
<td>6.1391</td>
</tr>
<tr>
<td>544.</td>
<td>6.2590</td>
</tr>
<tr>
<td>545.</td>
<td></td>
</tr>
<tr>
<td>546.</td>
<td>R</td>
</tr>
<tr>
<td>547.</td>
<td>0.3347</td>
</tr>
<tr>
<td>548.</td>
<td>0.3329</td>
</tr>
<tr>
<td>549.</td>
<td>0.3349</td>
</tr>
<tr>
<td>550.</td>
<td>0.3339</td>
</tr>
<tr>
<td>551.</td>
<td>0.3341</td>
</tr>
<tr>
<td>552.</td>
<td>0.3340</td>
</tr>
<tr>
<td>553.</td>
<td>0.1545</td>
</tr>
<tr>
<td>554.</td>
<td>0.1846</td>
</tr>
<tr>
<td>555.</td>
<td></td>
</tr>
<tr>
<td>556.</td>
<td>NPCR</td>
</tr>
<tr>
<td>557.</td>
<td>5.0863e-04</td>
</tr>
<tr>
<td>558.</td>
<td>5.0863e-04</td>
</tr>
<tr>
<td>559.</td>
<td>5.0863e-04</td>
</tr>
<tr>
<td>560.</td>
<td>5.0863e-04</td>
</tr>
<tr>
<td>561.</td>
<td>5.0863e-04</td>
</tr>
<tr>
<td>562.</td>
<td>5.0863e-04</td>
</tr>
<tr>
<td>563.</td>
<td>0.00074</td>
</tr>
</tbody>
</table>
564. 0.00074
565.
566. UACI
567. 10.1729
568. 10.1823
569. 10.1892
570. 10.1798
571. 10.1701
572. 10.1589
573. 28.221
574. 29.1083
575.
576. Entropy of original image
577. 6.9219
578. 6.9219
579. 6.9219
580. 6.9219
581. 6.9219
582. 6.9219
583. 7.2638
584. 7.2331
585.
586. Table 9. performance metrics in case DWT technique against Hard Gaussian attack for image (1)

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Chirikov</th>
<th>Chirikovtan</th>
<th>Henon</th>
<th>Ikeda</th>
<th>Logistic</th>
<th>Quadratic</th>
<th>Reference no.(14) without using filter</th>
<th>Reference no.(14) with using median filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE</td>
<td>4.1541e+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elapsed time</td>
<td>0.3564</td>
<td>0.3501</td>
<td>0.3747</td>
<td>0.3387</td>
<td>0.3346</td>
<td>0.3273</td>
<td>0.6259</td>
<td>0.6296</td>
</tr>
<tr>
<td>MSE</td>
<td>4.1541e+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DCT versus DWT Chaotic based Color Image Encryption

609. 4.1467×10^3
610. 4.1489×10^3
611. 4.1466×10^3
612. 4.1495×10^3
613. 4.1436×10^3
614. 10495
615. 10066
616.
617. PSNR
618. 11.9460
619. 11.9537
620. 11.9515
621. 11.9538
622. 11.9509
623. 11.9571
624. 7.9209
625. 8.1021
626.
627. R
628. 0.3326
629. 0.3347
630. 0.3344
631. 0.3346
632. 0.3341
633. 0.3347
634. 0.4341
635. 0.4601
636.
637. NPCR
638. 5.0863×10^{-4}
639. 5.0863×10^{-4}
640. 5.0863×10^{-4}
641. 5.0863×10^{-4}
642. 5.0863×10^{-4}
643. 5.0863×10^{-4}
644. 0.00074
645. 0.00074
646.
647. UACI
648. 10.1606
649. 10.1613
650. 10.1527
651. 10.1650
652. 10.1648
653. 10.1748
654. 5.6079
<table>
<thead>
<tr>
<th>Metrics</th>
<th>Chirikov</th>
<th>Chirikovtan</th>
<th>Henon</th>
<th>Ikeda</th>
<th>Logistic</th>
<th>Quadratic</th>
<th>Reference no.(14) without using filter</th>
<th>Reference no.(14) with using median filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elapsed time</td>
<td>0.2994</td>
<td>0.3069</td>
<td>0.4033</td>
<td>0.3149</td>
<td>0.3067</td>
<td>0.2967</td>
<td>0.7704</td>
<td>0.7911</td>
</tr>
<tr>
<td>MSE</td>
<td>4.2054e+03</td>
<td>4.2055e+03</td>
<td>4.2062e+03</td>
<td>4.2050e+03</td>
<td>4.2064e+03</td>
<td>4.2054e+03</td>
<td>15819</td>
<td>15388</td>
</tr>
<tr>
<td>PSNR</td>
<td>11.8927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>11.8926</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>701</td>
<td>11.8919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>702</td>
<td>11.8931</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>703</td>
<td>11.8917</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>704</td>
<td>11.8927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>705</td>
<td>6.1391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>706</td>
<td>6.2590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>707</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>708</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>709</td>
<td>0.3358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>710</td>
<td>0.3357</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>711</td>
<td>0.3355</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>712</td>
<td>0.3357</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>713</td>
<td>0.3356</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>714</td>
<td>0.3358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>715</td>
<td>0.1545</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>716</td>
<td>0.1846</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>717</td>
<td>NPCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>718</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>719</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>720</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>721</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>722</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>723</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>724</td>
<td>5.0863e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>725</td>
<td>0.00074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>726</td>
<td>0.00074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>727</td>
<td>UACI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>728</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>729</td>
<td>10.5089</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>730</td>
<td>10.5104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>731</td>
<td>10.5078</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>732</td>
<td>10.5119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>733</td>
<td>10.5105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>734</td>
<td>10.5052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>735</td>
<td>28.221</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>736</td>
<td>29.1083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>737</td>
<td>Entropy of original image</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>738</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>739</td>
<td>6.9219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>740</td>
<td>6.9219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>741</td>
<td>6.9219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>742</td>
<td>6.9219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>743</td>
<td>6.9219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>744</td>
<td>6.9219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>745</td>
<td>7.2638</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 11. Performance metrics in case DWT technique against Hard salt & pepper attack for image (1)

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Chirikov</th>
<th>Chirikovtan</th>
<th>Henon</th>
<th>Ikeda</th>
<th>Logistic</th>
<th>Quadratic</th>
<th>Reference no.(14) without using filter</th>
<th>Reference no.(14) with using median filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elapsed time</td>
<td>0.5476</td>
<td>0.3124</td>
<td>0.3630</td>
<td>0.3653</td>
<td>0.3178</td>
<td>0.3148</td>
<td>0.6259</td>
<td>0.7911</td>
</tr>
<tr>
<td>MSE</td>
<td>4.2050e+03</td>
<td>4.2072e+03</td>
<td>4.2069e+03</td>
<td>4.2048e+03</td>
<td>4.2063e+03</td>
<td>4.2068e+03</td>
<td>10495</td>
<td>15388</td>
</tr>
<tr>
<td>R</td>
<td>0.3357</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>791</td>
<td>0.3354</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>792</td>
<td>0.3355</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>793</td>
<td>0.3358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>794</td>
<td>0.3356</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>795</td>
<td>0.3355</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>796</td>
<td>0.4341</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>797</td>
<td>0.1846</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

798	NPCR
799	5.0863e-04
800	5.0863e-04
801	5.0863e-04
802	5.0863e-04
803	5.0863e-04
804	5.0863e-04
805	5.0863e-04
806	0.00074
807	0.00074

808	UACI
809	10.5114
810	10.5116
811	10.5072
812	10.5121
813	10.5079
814	10.5099
815	5.6079
816	29.1083

817	Entropy of original image
818	6.9219
819	6.9219
820	6.9219
821	6.9219
822	6.9219
823	6.9219
824	6.9219
825	6.9219
826	5.9133
827	7.2331
828	

829	Table 12. performance metrics in case DCT technique against Hard Speckle attack
830	for image (1)
831	Metrics
832	Chirikov
833	Chirikovtan
834	Henon
835	Ikeda
836	Logistic
836. Quadratic
837. Reference no.(14) without using filter
838. Reference no.(14) with using median filter
839.
840. Elapsed time
841. 0.2662
842. 0.2762
843. 0.2803
844. 0.2823
845. 0.2960
846. 0.2812
847. 0.7704
848. 0.7911
849.
850. MSE
851. 4.2233e+03
852. 4.2152e+03
853. 4.2121e+03
854. 4.2141e+03
855. 4.2171e+03
856. 4.2070e+03
857. 15819
858. 15388
859.
860. PSNR
861. 11.8743
862. 11.8826
863. 11.8858
864. 11.8837
865. 11.8807
866. 11.8911
867. 6.1391
868. 6.2590
869.
870. R
871. 0.3326
872. 0.338
873. 0.3334
874. 0.3349
875. 0.3337
876. 0.3351
877. 0.1545
878. 0.1846
879.
880. NPCR
881. 5.0863e-04
882. $5.0863e-04$
883. $5.0863e-04$
884. $5.0863e-04$
885. $5.0863e-04$
886. $5.0863e-04$
887. 0.00074
888. 0.00074
889.
890. $UACI$
891. 10.6046
892. 10.6249
893. 10.6235
894. 10.6057
895. 10.6348
896. 10.6167
897. 28.221
898. 29.1083
899.
900. Entropy of original image
901. 6.9219
902. 6.9219
903. 6.9219
904. 6.9219
905. 6.9219
906. 6.9219
907. 7.2638
908. 7.2331
909.
910. Table 13. performance metrics in case DWT technique against Hard Speckle attack for image (1)
911. Metrics
912. Chirikov
913. Chirikovtan
914. Henon
915. Ikeda
916. Logistic
917. Quadratic
918. Reference no.(14) without using filter
919. Reference no.(14) with using median filter
920.
921. Elapsed time
922. 0.2662
923. 0.2762
924. 0.2803
925. 0.2823
926. 0.2960
927. 0.2812
928. 0.6259
929. 0.7911
930.
931. MSE
932. 4.2233e+03
933. 4.2152e+03
934. 4.2121e+03
935. 4.2141e+03
936. 4.2171e+03
937. 4.2070e+03
938. 10495
939. 15388
940.
941. PSNR
942. 11.8743
943. 11.8826
944. 11.8858
945. 11.8837
946. 11.8807
947. 11.8911
948. 7.9209
949. 6.2590
950.
951. R
952. 0.3326
953. 0.338
954. 0.3334
955. 0.3349
956. 0.3337
957. 0.3351
958. 0.4341
959. 0.1846
960.
961. NPCR
962. 5.0863e-04
963. 5.0863e-04
964. 5.0863e-04
965. 5.0863e-04
966. 5.0863e-04
967. 5.0863e-04
968. 0.00074
969. 0.00074
970.
971. UACI
972. 10.6046
Entropy of original image

Keywords

Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), Inverse Discrete Cosine Transform (IDCT), Inverse Discrete Wavelet Transform (IDWT), Data Encryption Standard (DES), Data Encryption Standard (TRIPLE DES), Advanced Encryption Standard (AES).