Abstract

Scientific workflows epitomizing computation-intensive applications demand heterogeneous processing resources for attaining high performance. Generally, optimal scheduling of the tasks in workflow is well-acknowledged NP-complete problem. In the present work, a new makespan estimation model is proposed to estimate the bounds on the makespan of the workflows using minimal information. The performance of the proposed estimation model is evaluated using four scientific workflows and the estimation of the makespan computed by the model is compared with the actual makespan generated by the most-cited heuristic scheduling algorithms devised for heterogeneous processing systems. The experimental results revealed that the proposed estimation model is effective and can precisely estimate the makespan of the workflows with an error of over 10% and 26% for computation-intensive and data-intensive workflows respectively.

References

2. H.Topcuoglu, S.Hariri, and M.Y.Wu, “Performance effective and low-complexity task
3. D.Sirisha, and G.Vijayakumari, “Minimal start time heuristics for scheduling workflows in
heterogeneous processing systems,” Distributed Computing and Internet Technology, Springer
4. E.B.Fernandez, and B.Bussell, “Bounds on the number of resources and time for
5. K. Jain Kumar, and V. Rajaraman, “Lower and upper bounds on time for multiresource
optimal schedules,” IEEE Transactions on Parallel and Distributed Systems, vol.5(8),
“Characterization of scientific workflows,” 3rd Workshop on Workflows in Support
of Large-Scale Science, pp.1-10, Nov. 2008.
algorithm for heterogeneous computing environments,” Journal of Computer Science, vol.3(2),
execution time of scientific workflows on the cloud,” 9th Workshop on Workflows in Support of
“Montage: The architecture and scientific applications of a national virtual observatory service
for computing astronomical image mosaics,” Proceedings of Earth Sciences Technology

IndexTerms

Computer Science Information Systems

Keywords

scientific workflows; high performance; heterogeneous processing resource; makespan;
makespan estimation