Wireless sensor networks (WSNs) take very important benefits over usual communications in today’s applications like environmental observation, Homeland Security and health care. However, harsh and complicated environments pose great challenges within the reliability of WSN communications. To achieve reliable wireless communications at intervals WSNs, it's essential to own a reliable routing protocol and to own a way to evaluate the reliability performance of various routing protocols. Successive Interference Cancellation (SIC) could be a new physical layer technique that allows the receiver to decode composite signals from multiple transmitters sequentially. The introduction of sic improves the path bandwidth. During this development, the main focus is on the development of bandwidth-aware routing protocol with sic, aiming at achieving high overall end-to-end output. Throughout this paper, we tend to tend to focus on the design of bandwidth-aware routing protocol with set, aiming at achieving high overall end-to-end output. A routing metric capturing the advantage of set in terms of data live and network resource is planned, by that our routing protocol can choose a path satisfying the data measure demand of this flow and reserving further network resource for the subsequent
Efficient Routing by Power Optimization using Minimum Hop Count Routing Protocol in WSN

References


Index Terms
Keywords

Multihop Wireless Networks, Successive Interference Cancellation, Routing Metric, Available Bandwidth.