Call for Paper - January 2023 Edition
IJCA solicits original research papers for the January 2023 Edition. Last date of manuscript submission is December 20, 2022. Read More

A Survey of Intelligent Traffic Light Control Systems

Print
PDF
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Year of Publication: 2018
Authors:
Rahul Gala, Saurav Verma, Umang Kumar, Harish Ojha
10.5120/ijca2018916500

Rahul Gala, Saurav Verma, Umang Kumar and Harish Ojha. A Survey of Intelligent Traffic Light Control Systems. International Journal of Computer Applications 180(21):31-36, February 2018. BibTeX

@article{10.5120/ijca2018916500,
	author = {Rahul Gala and Saurav Verma and Umang Kumar and Harish Ojha},
	title = {A Survey of Intelligent Traffic Light Control Systems},
	journal = {International Journal of Computer Applications},
	issue_date = {February 2018},
	volume = {180},
	number = {21},
	month = {Feb},
	year = {2018},
	issn = {0975-8887},
	pages = {31-36},
	numpages = {6},
	url = {http://www.ijcaonline.org/archives/volume180/number21/29058-2018916500},
	doi = {10.5120/ijca2018916500},
	publisher = {Foundation of Computer Science (FCS), NY, USA},
	address = {New York, USA}
}

Abstract

Traffic congestion problem is a phenomenon on road networks that occurs as use increases, and is characterized by slower speeds, longer trip times, and increased vehicular queuing and contributes huge impact to the transportation system in the country.These TLC have limitations because it uses the pre-defined hardcode that does not have the flexibility of modification on real time basis. Due to the fixed time intervals of green, orange and red signals, the waiting time is more and the delay of respective light is not dependent on traffic. Thus, a car uses more fuel. Through this paper we intend to present an improvement in existing traffic control system at the intersection using different techniques i.e. Intelligent Traffic Light Controller using Embedded System, Traffic Control System Based on Image Processing Technique, Intelligent Traffic Light Using RFID Technique. Existing automatic traffic control system at the intersection with pre-set timing signals is proved to be inefficient in comparison with these

References

  1. RONG, Q. S., YAN, J. B., & GUO, G. Q. (2004). Research and Implementation of Clustering Algorithm Based on DBSCAN [J]. Computer Applications, 4.
  2. Verma, M., Srivastava, M., Chack, N., Diswar, A. K., & Gupta, N. (2012). A comparative study of various clustering algorithms in data mining. International Journal of Engineering Research and Applications (IJERA) Vol, 2, 1379-1384.
  3. Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd(Vol. 96, No. 34, pp. 226-231).
  4. Chakraborty, S., & Nagwani, N. K. (2014). Analysis and study of Incremental DBSCAN clustering algorithm. arXiv preprint arXiv:1406.4754.
  5. Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (1998). Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data mining and knowledge discovery, 2(2), 169-194.
  6. Borah, B., & Bhattacharyya, D. K. (2004). An improved sampling-based DBSCAN for large spatial databases. In Intelligent Sensing and Information Processing, 2004. Proceedings of International Conference on (pp. 92-96). IEEE.
  7. Erman, J., Arlitt, M., & Mahanti, A. (2006, September). Traffic classification using clustering algorithms. In Proceedings of the 2006 SIGCOMM workshop on Mining network data (pp. 281-286). ACM.
  8. Xu, X., Ester, M., Kriegel, H. P., & Sander, J. (1998, February). A distribution-based clustering algorithm for mining in large spatial databases. In Data Engineering, 1998. Proceedings., 14th International Conference on (pp. 324-331). IEEE.
  9. Kisilevich, S., Mansmann, F., & Keim, D. (2010, June). P-DBSCAN: a density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos. In Proceedings of the 1st international conference and exhibition on computing for geospatial research & application(p. 38). ACM.
  10. Ertöz, L., Steinbach, M., & Kumar, V. (2003, May). Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In SDM (pp. 47-58).
  11. Day, W. H., & Edelsbrunner, H. (1984). Efficient algorithms for agglomerative hierarchical clustering methods. Journal of classification, 1(1), 7-24.
  12. Cimiano, P., Hotho, A., & Staab, S. (2004). Comparing conceptual, divise and agglomerative clustering for learning taxonomies from text. In Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004.
  13. Willett, P. (1988). Recent trends in hierarchic document clustering: a critical review. Information Processing & Management, 24(5), 577-597.
  14. Kamvar, S. D., Klein, D., & Manning, C. D. (2002). Interpreting and extending classical agglomerative clustering algorithms using a model-based approach.
  15. Zhao, Y., & Karypis, G. (2002, November). Evaluation of hierarchical clustering algorithms for document datasets. In Proceedings of the eleventh international conference on Information and knowledge management (pp. 515-524). ACM.
  16. Voorhees, E. M. (1986). Implementing agglomerative hierarchic clustering algorithms for use in document retrieval. Information Processing & Management, 22(6), 465-476.
  17. Murtagh, F. (1983). A survey of recent advances in hierarchical clustering algorithms. The Computer Journal, 26(4), 354-359.
  18. Cimiano, P., & Staab, S. (2005). Learning concept hierarchies from text with a guided agglomerative clustering algorithm. In Proceedings of the ICML 2005 Workshop on Learning and Extending Lexical Ontologies with Machine Learning Methods.
  19. Davidson, I., & Ravi, S. S. (2005). Agglomerative hierarchical clustering with constraints: Theoretical and empirical results. In Knowledge Discovery in Databases: PKDD 2005 (pp. 59-70). Springer Berlin Heidelberg.
  20. Gowda, K. C., & Ravi, T. V. (1995). Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition Letters, 16(6), 647-652.
  21. Savaresi, S. M., Boley, D. L., Bittanti, S., & Gazzaniga, G. (2002, April). Cluster Selection in Divisive Clustering Algorithms. In SDM (pp. 299-314).
  22. Gowda, K. C., & Ravi, T. V. (1995). Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity. Pattern Recognition,28(8), 1277-1282.
  23. Chavent, M. (1998). A monothetic clustering method. Pattern Recognition Letters, 19(11), 989-996.
  24. Ding, C., & He, X. (2002). Cluster merging and splitting in hierarchical clustering algorithms. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on (pp. 139-146). IEEE.
  25. Feng, L., Qiu, M. H., Wang, Y. X., Xiang, Q. L., Yang, Y. F., & Liu, K. (2010). A fast divisive clustering algorithm using an improved discrete particle swarm optimizer. Pattern Recognition Letters, 31(11), 1216-1225.
  26. Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. Neural Networks, IEEE Transactions on, 16(3), 645-678.
  27. Sherlock, G. (2000). Analysis of large-scale gene expression data. Current opinion in immunology, 12(2), 201-205.
  28. Rubin, V., & Willett, P. (1983). A comparison of some hierarchal monothetic divisive clustering algorithms for structure-property correlation. Analytica Chimica Acta, 151, 161-166.
  29. Dhillon, I. S., & Guan, Y. (2003, November). Information theoretic clustering of sparse cooccurrence data. In Data Mining, 2003. ICDM 2003. Third IEEE International Conference on (pp. 517-520). IEEE.
  30. Tasoulis, S. K., Tasoulis, D. K., & Plagianakos, V. P. (2010). Enhancing principal direction divisive clustering. Pattern Recognition, 43(10), 3391-3411.
  31. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Applied statistics, 100-108.
  32. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(7), 881-892.
  33. Wagstaff, K., Cardie, C., Rogers, S., & Schrödl, S. (2001, June). Constrained k-means clustering with background knowledge. In ICML (Vol. 1, pp. 577-584).
  34. Bradley, P. S., & Fayyad, U. M. (1998, July). Refining Initial Points for K-Means Clustering. In ICML (Vol. 98, pp. 91-99).
  35. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651-666.
  36. Žalik, K. R. (2008). An efficient k′-means clustering algorithm. Pattern Recognition Letters, 29(9), 1385-1391.
  37. Nazeer, K. A., & Sebastian, M. P. (2009, July). Improving the Accuracy and Efficiency of the k-means Clustering Algorithm. In Proceedings of the World Congress on Engineering (Vol. 1, pp. 1-3).
  38. Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern recognition, 36(2), 451-461.
  39. Khan, S. S., & Ahmad, A. (2004). Cluster center initialization algorithm for K-means clustering. Pattern recognition letters, 25(11), 1293-1302.
  40. Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data mining and knowledge discovery, 2(3), 283-304.
  41. Zhang, Q., & Couloigner, I. (2005). A new and efficient k-medoid algorithm for spatial clustering. In Computational Science and Its Applications–ICCSA 2005(pp. 181-189). Springer Berlin Heidelberg.
  42. Arifovic, J. (1994). Genetic algorithm learning and the cobweb model. Journal of Economic dynamics and Control, 18(1), 3-28.
  43. Clerkin, P., Cunningham, P., & Hayes, C. (2002). Ontology discovery for the semantic web using hierarchical clustering. Trinity College Dublin, Department of Computer Science.
  44. Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine learning, 2(2), 139-172.
  45. Fisher, D. H. (1987, July). Improving Inference through Conceptual Clustering. In AAAI (Vol. 87, pp. 461-465).
  46. Sharma, N., Bajpai, A., & Litoriya, M. R. (2012). Comparison the various clustering algorithms of weka tools. facilities 4, 7.

Keywords

Traffic Control, Smart Lights, RFID