CFP last date
22 April 2024
Reseach Article

Design of Modified Stewart Platform for Solar Tracing Applications

by N. Mohammed Abu Basim, Nishant Sharma R., Ashwindh Vignesh A., P. B. Dinesh, I. Ajith
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 180 - Number 38
Year of Publication: 2018
Authors: N. Mohammed Abu Basim, Nishant Sharma R., Ashwindh Vignesh A., P. B. Dinesh, I. Ajith
10.5120/ijca2018917018

N. Mohammed Abu Basim, Nishant Sharma R., Ashwindh Vignesh A., P. B. Dinesh, I. Ajith . Design of Modified Stewart Platform for Solar Tracing Applications. International Journal of Computer Applications. 180, 38 ( May 2018), 33-40. DOI=10.5120/ijca2018917018

@article{ 10.5120/ijca2018917018,
author = { N. Mohammed Abu Basim, Nishant Sharma R., Ashwindh Vignesh A., P. B. Dinesh, I. Ajith },
title = { Design of Modified Stewart Platform for Solar Tracing Applications },
journal = { International Journal of Computer Applications },
issue_date = { May 2018 },
volume = { 180 },
number = { 38 },
month = { May },
year = { 2018 },
issn = { 0975-8887 },
pages = { 33-40 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume180/number38/29381-2018917018/ },
doi = { 10.5120/ijca2018917018 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:03:02.888859+05:30
%A N. Mohammed Abu Basim
%A Nishant Sharma R.
%A Ashwindh Vignesh A.
%A P. B. Dinesh
%A I. Ajith
%T Design of Modified Stewart Platform for Solar Tracing Applications
%J International Journal of Computer Applications
%@ 0975-8887
%V 180
%N 38
%P 33-40
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Parallel connection is an exceptional case, where the links and joints are formed in a sequential manner these chains join the base of the manipulator with the end effectors. Stewart Platform is a form of Parallel Manipulator which has a six-degree-of freedom, in parallel linkage. It is utilized in diverse applications requiring linkages with high structural stiffness.. Stewart Platform consists of a rigid platform supported by six variable length struts. Every set of six strut lengths defines a unique, fully constrained position of the platform. Using the strut lengths as controlling input, the position and orientation of the end effectors can be controlled as output.  Each leg includes a prismatic joint with ball-joint connection to the base and coupler, respectively. There are almost 64 different configurations; the Stewart Platform can be modified.  Here, we try to redefine and redesign the traditional Stewart Platform and use it for very specific application in tracking the sun’s radiations. The process is done by using Arduino Controller to control the platform with respect to Azimuth angles

References
  1. D. Manocha and J. Canny. Efficient inverse kinematics for general 6R manipulators. IEEE Transactions on Robotics and Automation, 10:648–657, 1994.
  2. J.-P. Merlet. Parallel Robots. Springer, 2000.
  3. J. H. Yakey, S. M. LaValle, and L. E. Kavraki. Randomized path planning for linkages with closed kinematic chains. IEEE Transactions on Robotics and Automation, 17(6):951–958, 2001.
  4. J. M. Porta. CuikSlam: A kinematics-based approach to SLAM. In IEEE International Conference on Robotics and Automation, pages 2436–2442, 2005.
  5. P. Kumar and S. Pellegrino. Computation of kinematic paths and bifurcation points. International Journal of Solids and Structures, (37):7003–70027, 2000.
  6. C. Borcea and I. Streinu. The number of embeddings of a minimally-rigid graph. Discrete and Computational Geometry, 31(2):287–303, 2004.
  7. W. J. Wedemeyer and H. Scheraga. Exact analytical loop closure in proteins using polynomial equations. Journal of Computational Chemistry, 20(8):819–844, 1999.
  8. .D . Stewart , ‘‘A Platform with Six Degrees of Freedom’’ Proc . IMechE ( London ) 180 , Part 1 , No . 15 371 – 386 (1965) .
  9. . H . McCallion , and D . T . Pham , ‘‘The analysis of a six degree of freedom work station for mechanised assembly’’ 5 th World Congress on Theory of Machines and Mechanisms (1979) . pp . 611 – 616 .
  10. . G . R . Dunlop , P . J . Ellis and N . V . Afzulpurkar , ‘‘The satellite tracking keyhole problem : a parallel mechanism mount solution’’ IPENZ Trans . 20 No 1 EMCh , 1 – 7 (1993) .
  11. Stewart, D., 1965. “A platform with six degrees of freedom”. Proceedings of the Institution of Mechanical Engineers, 180, pp. 371–386.
  12. Dasgupta, B., and Mruthyunjaya, T. S., 2000. “The Stewart platform manipulator: a review”. Mechanism and Machine Theory, 35(1), pp. 15–40.
  13. McInroy, J., and O’Brien, G., 1999. “Precise, fault-tolerant precision pointing using a Stewart platform”. IEEE/ASME Transactions on Mechatronics, 4, pp. 91–95.
  14. Preumont, A., Horodinca, M., Romanescu, I., de Marneffe, B., Avraam, M., Deraemaeker, A., Bossens, F., and Hanieh, A., 2007. “A six-axis single-stage active vibration isolator based on Stewart platform”. Journal of Sound and Vibration, 300, pp. 644–661.
  15. Shaw, D., and Chen, Y., 2001. “Cutting path generation of the Stewart platform-based milling machine using an endmill”. International Journal of Production Research, 39, pp. 1367–1383.
  16. van Silfhout, R. G., 1999. “High-precision hydraulic Stewart platform”. Review of Scientific Instruments, 70, pp. 3488–3494.
  17. Shoham, M., Burman, M., Zehavi, E., Joskowicz, L., Batkilin, E., and Kunicher, Y., 2003. “Bone-mounted miniature robot for surgical procedures: Concept and clinical applications”. IEEE Transactions on Robotics and Automation, 19(5), October.
  18. Cort´es, J., and Sim´eon, T., 2003. “Probabilistic motion planning for parallel mechanisms”. In Proc. of the Int. Conf. on Robotics and Automation, Vol. 3, pp. 4354–4359
  19. . Karger, A., Husty, M., 1996, "On Self-Motions of a Class o f Parallel Manipulators", Recent Advances in Robot Kinematics, Kluwer Academic Publishers, pp. 339-348.
  20. . Ma, O., Angeles, J., 1992, "Architecture Singularities o f Platform Manipulators", Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, April 11-14, pp. 1542-1547.
  21. . Zlatanov, D., Fenton, R.G., Benhabib, B., 1994, "Analysis of the Instantaneous Kinematics and Singular Configurations of Hybrid-Chain Manipulators," Proceedings of the ASME 23rd Biennial Mechanisms Conference, DE-Vol. 72, Minneapolis, MN, USA, September 11-14, pp. 467-476.
  22. . Meirovitch, L., Methods of Analytical Dynamics, McGraw Hill, New York, 1970.
  23. . Dasgupta, B. and Mruthyunjaya T. S., Advances in Mechanical Engineering, Proceedings of the International Conference of Advances in Mechanical Engineering, Vol. 1, ed: T. S. Mruthyunjaya. Narosa Publishing House, New Delhi, India, 1996, 199±218.
  24. . Stewart, D., in Proceedings of the Institute of Mechanical Engineerrs, Vol. 180, 1965±66, pp. 371±386.
  25. . Fichter, E. F., International Journal of Robotics Research, 1986, 5(2), 157±182.
  26. . Merlet, J. P., Parallel manipulators part 1: theory. design, kinematics, dynamics and control, INRIA Report, 1987.
  27. . Sugimoto, K., Transactions of ASME, Journal of Mechanism, Transmission and Automation in Design, 1987, 109, 3±7.
  28. . Sugimoto, K., Transactions of ASME, Journal of Mechanism, Transmission and Automation in Design, 1989, 111, 29±33.
  29. . Do, W. Q. D. and Yang, D. C. H., Journal of Robotic Systems, 1988, 5(3), 209±227.
  30. . Geng, Z., Haynes, L. S., Lee, J. D. and Carroll, R. L., Robotics and Autonomous Systems, 1992, 9, 237±254.
  31. . Liu, K., Fitzgerald, M., Dawson, D. W. and Lewis, F. L., ASME DSC, Control of Systems with Inexact Dynamic Models, 1991, 33, 83±89.
  32. . Liu, K., Lewis, F., Lebret, G. and Taylor, D., Journal of Intelligent Robotic Systems, 1993, 8, 287±308.
  33. . Ji, Z., Transactions of ASME, Journal of Mechanical Design, 1994, 116, 67±69.
  34. Simaan And Shoham: Singularity Analysis Of A Class Of Composite Serial In-Parallel Robots, Ieee Transactions On Robotics And Automation, VOL. 17, NO. 3, JUNE 2001
  35. Jean-Pierre Merlet, Micro parallel robot MIPS for medical applications DOI: 10.1109/ETFA.2001.997742 ·
  36. Paul Bosscher Imme Ebert-Uphoff, A Novel Mechanism for Implementing Multiple Collocated Spherical Joints Proceedings of the 2003 IEEE International Conference on Robotics & Automation Taipei, Taiwan, September 14-19, 2003
  37. Denis Garagić and Krishnaswamy Srinivasan,
  38. Contouring Control Of Stewart Platform Based Machine Tools Proceeding of the 2004 American Control Conference Boston, Massachusetts June 30 - July 2, 2004
  39. N. Sims’an, D. Glozman, M. Shoharn, DESIGN CONSIDERATIONS OF NEW SIX DEGREES-OF-FREEDOM PARALLEL ROBOTS, Proceedings of the 1998 IEEE International Conference on Robotics& Automation
  40. Haiying Wen, Weiliang Xu, and Ming Cong Kinematic Model and Analysis of an Actuation
  41. Redundant Parallel Robot With Higher Kinematic Pairs for Jaw Movement IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 3, MARCH 2015
  42. Katsumi Watanabe, Tsutomu Kawakatsu
  43. Shouichi Nakao Kinematic and Static Analyses of Tripod Constant Velocity Joints of the Spherical End Spider Type NOVEMBER 2005, Vol. 127 / 1137
  44. Bhaskar Dasgupta and T. S. Mruthyunjaya (1994) A Canonical Formulation Of The Direct Position Kinematics Problem For A General 6-6 Stewart Platform, Mech. Much. Them')" Vol. 29. No. 6. pp. 819--827, 1994
Index Terms

Computer Science
Information Sciences

Keywords

Parallel Manipulators Stewart Platforms Prismatic Joint Azimuth Angles Arduino Controller