A Taylor Series based Fuzzy Mathematical Approach for Multi Objective Linear Fractional Programming Problem with Fuzzy Parameters

International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA

Volume 180
Number 45

Year of Publication: 2018

Authors:
Surapati Pramanik, Indrani Maiti, Tarni Mandal

10.5120/ijca2018917154

Abstract

This article presents an approach to acquire the solution of multi-objective linear fractional programming problems where the parameters are assumed to be triangular fuzzy numbers. This is done through a fuzzy mathematical programming perspective based on an approximation method using Taylor series. The problem is first formulated into an equivalent deterministic form using the concept of α-cuts. The associated membership function of each objective function is formulated using the individual optimal solution and is then converted into a linear function by applying the first order Taylor series. The multi-objective linear fractional programming problem then gets reduced to a linear programming problem by applying fuzzy mathematical programming. To illustrate the computational simplicity and applicability of the proposed approach, a numerical example is solved and the results are compared with existing methods.

References

Innovative Science Engineering and Technology 2 (6), 153-160.

Index Terms

Computer Science Fuzzy Systems

Keywords

Multi-objective linear fractional programming problem, fuzzy mathematical programming, Taylor series, triangular fuzzy number, α-cut