Abstract

Arithmetic Logic Unit plays a vital role in the central processing unit of the computer system. Addition is considered to be a primary part in the ALU. Power and speed are the major parameters to be kept in mind for designing an adder. Because of carry propagation, complexity and delay gets introduced in the adder circuit due to which addition, subtraction and multiplication obtains delay in the Arithmetic Logic unit. In order to reduce the delay, carry-free addition is introduced by QSD (Quaternary Signed Digit) Numbers. In this paper, a fast QSD Addition and Subtraction circuit is designed by use of DPG Reversible Logic Gates.

References

2. Radhika Thakur, Shruti Jain and Meenakshi Sood, FPGA Implementation of Unsinged
Reversible Logic gate based on QSD Addition/Subtraction using DPG Gate

3. Purva Agarwal and Pawan Whig, “Low Delay Based 4 Bit QSD Adder / Subtraction Number System By Reversible Logic Gate”, 2016 8th International Conference on Computational Intelligence and Communication Networks.

Index Terms

Computer Science

Circuits and Systems

Keywords

Quaternary Signed Digit (QSD), Reversible Gate, DPG Gate, Carry Free Addition