Abstract

The problem of estimating the effort for software packages is one of the most significant challenges encountering software designers. The precision in estimating the effort or cost can have a huge impact on software development. Various methods have been investigated in order to discover good enough solutions to this problem; lately evolutionary intelligent techniques are explored like Genetic Algorithms, Genetic Programming, Neural Networks, and Swarm Intelligence. In this work, Gene Expression Programming (GEP) is investigated to show its efficiency in acquiring equations that best estimates software effort. Datasets employed are taken from previous projects. The comparisons of learning and testing results are carried out with COCOMO, Analogy, GP and four types of Neural Networks, all show that GEP outperforms all these methods in discovering effective functions for the estimation with robustness and efficiency.

References


Neural Networks", MECS DOI: 10.5815/ijisa.2012.09.03, © MECS I.J. Intelligent Systems and
Applications.
Engineering Research Group, Department of Computer Science, University of Zurich,
Switzerland.
Genetic Programming-Based Ranking Discovery For Web Search", Journal of the American
Society for Information Science and Technology, 27-14 self.
Methodology for NASA Software Projects", In proceeding of: 10th International Conference on
2, June 2017, ISSN 2277 – 8322.
Romania. 28p.
Development Effort Prediction: a Software Science Validation", IEEE Transactions on Software
Engineering 9 (6) 639–648.
developement en informatique à partir de la technique des points de function", Master’s Thesis,
Univ. du Que´bec a´ Montreal, De´cembre,.
1981.
35. B.A. Kitchenham, N.R. Taylor, Software project development cost estimation, Journal of

Index Terms
Computer Science Biomedical
Keywords

Effort Estimation, Software Engineering, Artificial Intelligence, Gene Expression Programming.