CFP last date
20 June 2024
Reseach Article

A Semi-parallel Data Acquisition Method in Electrical Impedance Tomography using Undersampling Technique

by Adriano Regis, Daniel J. Pagano, Francisco R.M. Mota, Marduck M. Henao
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 186 - Number 23
Year of Publication: 2024
Authors: Adriano Regis, Daniel J. Pagano, Francisco R.M. Mota, Marduck M. Henao
10.5120/ijca2024923693

Adriano Regis, Daniel J. Pagano, Francisco R.M. Mota, Marduck M. Henao . A Semi-parallel Data Acquisition Method in Electrical Impedance Tomography using Undersampling Technique. International Journal of Computer Applications. 186, 23 ( May 2024), 1-7. DOI=10.5120/ijca2024923693

@article{ 10.5120/ijca2024923693,
author = { Adriano Regis, Daniel J. Pagano, Francisco R.M. Mota, Marduck M. Henao },
title = { A Semi-parallel Data Acquisition Method in Electrical Impedance Tomography using Undersampling Technique },
journal = { International Journal of Computer Applications },
issue_date = { May 2024 },
volume = { 186 },
number = { 23 },
month = { May },
year = { 2024 },
issn = { 0975-8887 },
pages = { 1-7 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume186/number23/a-semi-parallel-data-acquisition-method-in-electrical-impedance-tomography-using-undersampling-technique/ },
doi = { 10.5120/ijca2024923693 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-05-31T22:32:03+05:30
%A Adriano Regis
%A Daniel J. Pagano
%A Francisco R.M. Mota
%A Marduck M. Henao
%T A Semi-parallel Data Acquisition Method in Electrical Impedance Tomography using Undersampling Technique
%J International Journal of Computer Applications
%@ 0975-8887
%V 186
%N 23
%P 1-7
%D 2024
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Hardware and software aspects of a semiparallel electrical impedance microtomography (EIT) system designed for highspeed data acquisition employing cost-effective measurements via subsampling techniques are covered in this paper. We explore the effects of the Nyquist theorem on sampling EIT system implementations through software and hardware testing. These experiments focus on the benefits of a semi-parallel approach, which involves serializing the excitation current and integrating parallelism into acquisition measurement hardware, operating under sub-Nyquist conditions. This innovative methodology promises greater efficiency and performance, potentially increasing the capabilities of EIT systems in diverse applications.

References
  1. D. C. Barber and B. H. Brown. Applied potential tomography. Journal of the British Interplanetary Society, 42(7):391–393, 1989.
  2. Atmel Corporation. Sam3x / sam3a series smart arm-based mcu. Datasheet 1600 Technology Drive, San Jose, CA 95110 USA, Atmel, mar 2015. Rev.: Atmel-11057C-ATARMSAM3X- SAM3A-Datasheet-23-Mar-15.
  3. Dirk J. De Beer and Trudi H. Joubert. Undersampling and Saturation for Impedance Spectroscopy Performance. IEEE Sensors Journal, 21(20):23382–23389, 2021.
  4. Analog Devices. Ad7705/ad7706 3 v/5 v, 1 mw, 2-/3-channel, 16 bit, sigma-delta adcs. Datasheet One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S., Analog Devices, 2015. Rev. C.
  5. T. Dudykevych, E. Gersing, F. Thiel, and G. Hellige. Impedance analyser module for EIT and spectroscopy using undersampling. Physiological Measurement, 22(1):19– 24, 2001.
  6. Alejandro F. Frangi, Pere J. Riu, Javier Rosell, and Max A. Viergever. Propagation of measurement noise through backprojection reconstruction in electrical impedance tomography. IEEE Transactions om Medical Imaging, 21, jun 2002.
  7. Alex Hartov, Robert A. Mazzarese, Fred R. Reiss, Todd E. Kerner, K. Sunshine Osterman, Dinise B. Williams, and Keith D. Paulsen. A multichannel continuously selectable multifrequency electrical impedance spectroscopy measurement system. IEEE Transactions on Biomedical Engineering, 47(1):49–58, 2000.
  8. W. Kester. Mixed-Signal and DSP Design Techniques, Analog Devices series. Edited by W. Kester, Published by Newnes/Elsevier, 2002, ISBN-0-75067-611-6, 2002.
  9. Liwen Miao, Yixin Ma, Xiaofan Xiong, Xinyi Chen, Tao Han, Ping Cai, Peng Qin, and Xiaojun Ji. A new symmetric semiparallel Electrical Impedance Tomography (EIT) system - I: The design. IST 2016 - 2016 IEEE International Conference on Imaging Systems and Techniques, Proceedings, pages 19– 23, 2016.
  10. Mart Min, Toomas Parve, Ants Ronk, Paul Annus, and Toivo Paavle. Synchronous Sampling and Demodulation in an Instrument for Multifrequency Bioimpedance Measurement. IEEE Transactions on Instrumentation and Measurement, 56(4):1365–1372, 2007.
  11. J. H. Nagel. 17th International Conference on Electrical Bioimpedance, ICEBI 2019, volume 72. 2020.
  12. Tong In Oh, Hun Wi, Do Yub Kim, Pil Joong Yoo, and Eung Je Woo. A fully parallel multi-frequency EIT system with flexible electrode configuration: KHU Mark2. Physiological Measurement, 32(7):835–849, 2011.
  13. Tong In Oh, Eung Je Woo, and David Holder. Multifrequency EIT system with radially symmetric architecture: KHU Mark1. Physiological Measurement, 28(7), 2007.
  14. A. Regis, D. J. Pagano, and F. R.M. Mota. An EIT data acquisition system for microtomography applications. International Journal of Computer Applications, 186(15):1–6, April 2024.
  15. Imam Sapuan, Moh Yasin, Khusnul Ain, and Retna Apsari. Anomaly Detection Using Electric Impedance Tomography Based on Real and Imaginary Images. Sensors (Basel, Switzerland), 20(7), 2020.
  16. A. Schluchter. A 16-Channel Electrical Impedance Tomography System Using the Red Pitaya. PhD thesis, UC San Diego, https://escholarship.org/uc/item/7969r8kb, 2020.
  17. C. E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21, jan 1949.
  18. MiWang, Yixin Ma, Nigel Holliday, Yunfeng Dai, Richard A. Williams, and Gary Lucas. A high-performance eit system. IEEE Sensors Journal, 5(2):289–298, 2005.
  19. HancongWu, Yunjie Yang, Pierre O. Bagnaninchi, and Jiabin Jia. Electrical impedance tomography for real-time and labelfree cellular viability assays of 3D tumour spheroids. Analyst, 143(17):4189–4198, 2018.
  20. Y. Yang and J. Jiabin. A multi-frequency electrical impedance tomography system for real-time 2d and 3d imaging. Review of Scientific Instruments, 88(8), 2017.
  21. D. Y´elamos, O. Casas, R. Brag´os, and J. Rosell. Improvement of a front end for bioimpedance spectroscopy, 1999.
Index Terms

Computer Science
Information Sciences
Electrical impedance tomography
semi-parallel
undersampling

Keywords

Hardware implementation semi-parallel undersampling